scholarly journals Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions

2014 ◽  
Author(s):  
Timothy M. Christensen ◽  
Xiaohong Chen



2021 ◽  
pp. 1-22
Author(s):  
Daisuke Kurisu ◽  
Taisuke Otsu

This paper studies the uniform convergence rates of Li and Vuong’s (1998, Journal of Multivariate Analysis 65, 139–165; hereafter LV) nonparametric deconvolution estimator and its regularized version by Comte and Kappus (2015, Journal of Multivariate Analysis 140, 31–46) for the classical measurement error model, where repeated noisy measurements on the error-free variable of interest are available. In contrast to LV, our assumptions allow unbounded supports for the error-free variable and measurement errors. Compared to Bonhomme and Robin (2010, Review of Economic Studies 77, 491–533) specialized to the measurement error model, our assumptions do not require existence of the moment generating functions of the square and product of repeated measurements. Furthermore, by utilizing a maximal inequality for the multivariate normalized empirical characteristic function process, we derive uniform convergence rates that are faster than the ones derived in these papers under such weaker conditions.





2015 ◽  
Vol 7 (2) ◽  
pp. 220-242
Author(s):  
Abbes Rabhi ◽  
Latifa Keddani ◽  
Yassine Hammou

AbstractThe maximum of the conditional hazard function is a parameter of great importance in seismicity studies, because it constitutes the maximum risk of occurrence of an earthquake in a given interval of time. Using the kernel nonparametric estimates of the first derivative of the conditional hazard function, we establish uniform convergence properties and asymptotic normality of an estimate of the maximum in the context of independence data.



Sign in / Sign up

Export Citation Format

Share Document