basic spin
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Piotr Trocha ◽  
Emil Siuda

Abstract We investigate spin thermoelectric properties of a hybrid system consisting of a single-level quantum dot attached to magnetic insulator and metal electrodes. Magnetic insulator is assumed to be of ferromagnetic type and is a source of magnons, whereas metallic lead is reservoir of electrons. The temperature gradient set between the magnetic insulator and metallic electrodes induces the spin current flowing through the system. The generated spin current of magnonic (electric) type is converted to electric (magnonic) spin current by means of quantum dot. Expanding spin and heat currents flowing through the system, up to linear order, we introduce basic spin thermoelectric coefficients including spin conductance, spin Seebeck and spin Peltier coefficients and heat conductance. We analyse the spin thermoelectric properties of the system in two cases: in the large ondot Coulomb repulsion limit and when these interactions are finite.


2019 ◽  
Vol 169 (2) ◽  
pp. 231-253
Author(s):  
MARK WILDON

AbstractThe symmetric group on a set acts transitively on the set of its subsets of a fixed size. We define homomorphisms between the corresponding permutation modules, defined over a field of characteristic two, which generalize the boundary maps from simplicial homology. The main results determine when these chain complexes are exact and when they are split exact. As a corollary we obtain a new explicit construction of the basic spin modules for the symmetric group.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Federico Montoncello ◽  
Loris Giovannini

We investigate a special design of two-dimensional magnonic crystal, consisting of two superimposed lattices with different lattice constants, such that spin waves (SWs) can propagate either in one or the other sublattice, depending on which of the two frequency bands they belong to. The SW bands are separated by a very large bandgap (in our model system, 6 GHz), easily tunable by changing the direction of an applied magnetic field, and the overlap of their spatial distribution, for any frequency of their bands, is always negligible. These properties make the designed system an ideal test system for a magnonic dual band waveguide, where the simultaneous excitation and subsequent propagation of two independent SW signals are allowed, with no mutual interference.


2015 ◽  
Vol 30 (17) ◽  
pp. 1530043
Author(s):  
P. Minkowski

We present the embedding of the SM gauge group in SO10, a simple, compact unifying gauge group, with each of the three basic spin 1/2 families forming a unitary, irreducible 16-dimensional representation of spin10, which is complex, i.e. chiral. Subtle differences to the mixed representations of SU5, contained in the SO10 scheme, are pointed out. These have consequences for neutrino flavors, which become paired in a light [Formula: see text]-active doublet mode and a heavy SM singlet mode, one [Formula: see text], [Formula: see text]-pair per family.


2006 ◽  
Vol 2 (S236) ◽  
pp. 167-176 ◽  
Author(s):  
Petr Pravec ◽  
A. W. Harris ◽  
B. D. Warner

AbstractOf the nearly 3900 near-Earth asteroids (NEAs) known as of June 2006, 325 have estimated rotation periods, with most of those determined by lightcurve analysis led by a few dedicated programs. NEAs with diameters down to 10 meters have been sampled. Observed spin distribution shows a major changing point around diameter of 200 meters. Larger NEAs show a barrier against spins faster than 11 d−1 (period about 2.2 h) that shifts to slower rates (longer periods) with increasing lightcurve amplitude (i.e., with increasing equatorial elongation). The spin barrier is interpreted as a critical spin rate for bodies in a gravity regime; NEAs larger than 200 meters are predominantly bodies with tensile strength too low to withstand a centrifugal acceleration for rotation faster than the critical spin rate. The cohesionless spin barrier disappears at sizes less than 200 meters where most objects rotate too fast to be held together by self-gravitation only, so a cohesion is implied in the smaller NEAs.The distribution of NEA spin rates in the cohesionless size range (D0.2 km) is highly non-Maxwellian, suggesting that mechanisms other than just collisions have been at work. There is a pile up just in front of the barrier, at periods 2–3 h. It may be related to a spin up mechanism crowding asteroids to the barrier. An excess of slow rotators is observed at periods longer than 30 hours. A spin-down mechanism has no obvious lower limit on spin rate; periods as long as tens of days have been observed.Most NEAs appear to be in their basic spin states with rotation around principal axis with maximum moment of inertia. Tumbling objects (i.e., bodies in excited, non-principal axis rotation) are present and actually predominate among slow rotators with estimated damping timescales longer than the age of the solar system. A few tumblers observed among fast rotating coherent objects appear to be either more rigid or younger than the larger (cohesionless) tumblers.An abundant population of binary systems has been found among NEAs. The fraction of binaries among NEAs larger than 0.3 km has been estimated to be 15 ± 4%. Primaries of binary systems concentrate at fast spin rates (periods 2–3 h) and low amplitudes, i.e., they lie just below the cohesionless spin barrier. The total angular momentum content in binary systems suggests that they formed from parent bodies spinning at the critical rate. The fact that a very similar population of binaries has been found among small main belt asteroids suggests a binary formation mechanism that may not be related to close encounters with the terrestrial planets.


2005 ◽  
Vol 13 (1) ◽  
pp. B3.0.1-B3.0.1
Author(s):  
Hongyu An ◽  
Weili Lin

Sign in / Sign up

Export Citation Format

Share Document