Solving systems of high-order linear ordinary differential equations with variable coefficients by means of exponential Chebyshev collocation method

2017 ◽  
Vol 8 (1-2) ◽  
pp. 40 ◽  
Author(s):  
Mohamed Ramadan ◽  
Kamal Raslan ◽  
Talaat El Danaf ◽  
Mohamed A. Abd Elsalam

The purpose of this paper is to investigate the use of exponential Chebyshev (EC) collocation method for solving systems of high-order linear ordinary differential equations with variable coefficients with new scheme, using the EC collocation method in unbounded domains. The EC functions approach deals directly with infinite boundaries without singularities. The method transforms the system of differential equations and the given conditions to block matrix equations with unknown EC coefficients. By means of the obtained matrix equations, a new system of equations which corresponds to the system of linear algebraic equations is gained. Numerical examples are given to illustrative the validity and applicability of the method.

2016 ◽  
Vol 7 (1) ◽  
pp. 19 ◽  
Author(s):  
Mohamed Ramadan ◽  
Kamal Raslan ◽  
Talaat El Danaf ◽  
Mohamed A. Abd Elsalam

The purpose of this paper is to investigate a new exponential Chebyshev (EC) operational matrix of derivatives. The new operational matrix of derivatives of the EC functions is derived and introduced for solving high-order linear ordinary differential equations with variable coefficients in unbounded domain using the collocation method. This method transforms the given differential equation and conditions to matrix equation with unknown EC coefficients. These matrices together with the collocation method are utilized to reduce the solution of high-order ordinary differential equations to the solution of a system of algebraic equations. The solution is obtained in terms of EC functions. Numerical examples are given to demonstrate the validity and applicability of the method. The obtained numerical results are compared with others existing methods and the exact solution where it shown to be very attractive with good accuracy.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Muhammed Çetin ◽  
Mehmet Sezer ◽  
Coşkun Güler

An approximation method based on Lucas polynomials is presented for the solution of the system of high-order linear differential equations with variable coefficients under the mixed conditions. This method transforms the system of ordinary differential equations (ODEs) to the linear algebraic equations system by expanding the approximate solutions in terms of the Lucas polynomials with unknown coefficients and by using the matrix operations and collocation points. In addition, the error analysis based on residual function is developed for present method. To demonstrate the efficiency and accuracy of the method, numerical examples are given with the help of computer programmes written inMapleandMatlab.


1994 ◽  
Vol 1 (1) ◽  
pp. 1-8
Author(s):  
T. Chanturia

Abstract It is shown that the differential equation u (n) = p(t)u, where n ≥ 2 and p : [a, b] → ℝ is a summable function, is not conjugate in the segment [a, b], if for some l ∈ {1, . . . , n – 1}, α ∈]a, b[ and β ∈]α, b[ the inequalities hold.


2015 ◽  
Vol 11 (7) ◽  
pp. 5403-5410 ◽  
Author(s):  
Mohamed Abdel -Latif Ramadan

The purpose of this paper is to investigate the use of rational Chebyshev (RC) functions for solving higher-order linear ordinary differential equations with variable coefficients on a semi-infinite domain using new rational Chebyshev collocation points.  This method transforms the higher-order linear ordinary differential equations and the given conditions to matrix equations with unknown rational Chebyshev coefficients. These matrices together with the collocation method are utilized to reduce the solution of higher-order ordinary differential equations to the solution of a system of algebraic equations. The solution is obtained in terms of RC series. Numerical examples are given to demonstrate the validity and applicability of the method. The obtained numerical results are compared with others existing methods and the exact solution where it shown to be very attractive and maintains better accuracy.


2015 ◽  
Vol 23 ◽  
pp. 98
Author(s):  
T.P. Goy

We study two new real-valued non-elementary functions generated by central factorial powers. Graphs of such functions are plotted and some of their properties are proved. It is also shown that new integral functions are solutions of fourth order linear ordinary differential equations with variable coefficients.


2016 ◽  
Vol 23 (4) ◽  
pp. 571-577
Author(s):  
Monika Dosoudilová ◽  
Alexander Lomtatidze

AbstractAn efficient condition is established ensuring that on any interval of length ω, any nontrivial solution of the equation ${u^{\prime\prime}=p(t)u}$ has at most one zero. Based on this result, the unique solvability of a periodic boundary value problem is studied.


Sign in / Sign up

Export Citation Format

Share Document