scholarly journals PEMANFAATAN FLY ASH BATUBARA DENGAN ADITIF KAOLIN SEBAGAI FILTER GAS BUANG TERHADAP EMISI GAS BUANG SEPEDA MOTOR SATRIA FU 150

2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Abdul Ghofur ◽  
Rudi Siswanto

Meningkatnya jumlah kendaraan bermotor setiap tahun berdampak terhadap peningkatan gas buang, salah satu teknologi yang dapat digunakan untuk mereduksi emisi gas buang kendaraan yaitu dengan penambahan filter gas buang pada saluran gas buang kendaraan. Filter gas buang merupakan sebuah filter (penyaring) yang menggunakan keramik berpori, dimana media tersebut diharapkan dapat membantu atau mempercepat terjadinya proses penyaringan sehingga gas seperti CO dan HC dapat tersaring.Penelitian ini menggunakan tiga komposisi dari campuran fly ash dan kaolin. Dari hasil penelitian diketahui bahwa filter gas buang berbahan fly ash batubara dan kaolin memiliki kemampuan dalam mengurangi emisi gas buang HC dan CO serta dalam mengurangi tingkat kebisingan. Dibandingkan dengan knalpot tanpa filter gas buang, persentase tertinggi filter gas buang komposisi A dalam mengurangi emisi HC sebesar 87,89 % pada rpm idle, sedangkan untuk CO sebesar 78,21 % pada rpm idle. Persentase tertinggi filter gas buang komposisi B dalam mengurangi emisi HC sebesar 85,29 % pada rpm idle , sedangkan untuk CO sebesar 72,13 % pada rpm idle. Persentase tertinggi filter gas buang komposisi C dalam mengurangi emisi HC sebesar 76,11 % pada rpm idle , sedangkan untuk CO sebesar 66,57 % pada rpm idle.Kata Kunci: emisi gas buang, filter gas buang, fly ash, kaolin.With the increased motor cycle, every year have been affecting the populated from combustion gas, one of the technology that can reduce the amount of combustion gas is to install filters on the exhaust nozzle. Exhaust filters is a porous permeable ceramics filterer, where it should aid or hasten the filtering process like carbon monoxide (CO) and hydro carbon (HC). In this experiment using three types of combined fly ash and kaolin. From the result known that combined fly ash and kaolin can reduce emission gas of CO and HC as well as the noise level. In result known that exhaust filters is superior in overall performance and reducing HC emission than any standard exhaust nozzle. Comparing between nozzle without filterer, with type A composition the highest percentage of HC decreased emission by 87.89% in idle rpm, while the highest percentage of CO decreased emission by 78.21% in idle rpm. On type B composition, the highest percentage of HC decreased emission by 85.29% in idle rpm, while the highest percentage of CO decreased emission by 72.13% in idle rpm. Last with type C composition the highest percentage of HC decreased emission by 76.11% in idle rpm, while the highest percentage of CO decreased emission by 66.57% in idle rpm. Key word : cly, exhaust filters, exhaust gas emission, fly ash.

2010 ◽  
Author(s):  
Herbert Roeser ◽  
Dilip Kalyankar

Ships are an integral part of modern commercial transport, leisure travel, and military system. A diesel engine was used for the first time for the propulsion of a ship sometime in the 1910s and has been the choice for propulsion and power generation, ever since. Since the first model used in ship propulsion, the diesel engine has come a long way with several technological advances. A diesel engine has a particularly high thermal efficiency. Added to it, the higher energy density of the diesel fuel compared to gasoline fuel makes it inherently, the most efficient internal combustion engine. The modern diesel engine also has a very unique ability to work with a variety of fuels like diesel, heavy fuel oil, biodiesel, vegetable oils, and several other crude oil distillates which is very important considering the shortage of petroleum fuels that we face today. In spite of being highly efficient and popular and in spite of all the technological advances, the issue of exhaust gas emissions has plagued a diesel engine. This issue has gained a lot of importance since 1990s when IMO, EU, and the EPA came up with the Tier I exhaust gas emission norms for the existing engine in order to reduce the NOx and SOx. Harsher Tier II and Tier III norms were later announced for newer engines. Diesel fuels commonly used in marine engines are a form of residual fuel, also know as Dregs or Heavy Fuel Oil and are essentially the by products of crude oil distillation process used to produce lighter petroleum fuels like marine distillate fuel and gasoline. They are cheaper than marine distillate fuels but are also high in nitrogen, sulfur and ash content. This greatly increases the NOx and SOx in the exhaust gas emission. Ship owners are trapped between the need to use residual fuels, due to cost of the large volume of fuel consumed, in order to keep the operation of their ships to a competitive level on one hand and on the other hand the need to satisfy the stringent pollution norms as established by the pollution control agencies worldwide. Newer marine diesel engines are being designed to meet the Tier II and Tier III norms wherever applicable but the existing diesel engine owners are still operating their engines with the danger of not meeting the applicable pollution norms worldwide. Here we make an effort to look at some of the measure that the existing marine diesel engine owners can take to reduce emissions and achieve at least levels prescribed in Tier I. Proper maintenance and upkeep of the engine components can be effectively used to reduce the exhaust gas emission. We introduced a pilot program on diesel engine performance monitoring in North America about two years ago and it has yielded quite satisfying results for several shipping companies and more and more ship owners are looking at the option of implementing this program on their ships.


Sign in / Sign up

Export Citation Format

Share Document