scholarly journals Fault-tolerant control system for the formation of carbon products

Author(s):  
Liudmyla Zhuchenko

The production of carbon products is largely resource- and energy-intensive. That is why increasing the efficiency of this production is an urgent scientific and practical task, especially in modern conditions of constant growth of energy costs. An effective way to solve this problem is to create a modern process control system, taking into account possible failures of system components. A method for the synthesis of a fault-tolerant control system for the cyclic formation of carbon products has been developed, which takes into account control errors that are caused by malfunctions of controllers under conditions of unknown disturbances. According to the cyclic nature of the technological process under consideration, a control method with iterative learning was used in the synthesis of the control system. This method considers cyclic processes based on a two-dimensional model (2D model). The proposed control algorithm ensures the convergence of the control process with the task both in time and in each work cycle in order to promote the required quality of control even in the event of unknown disturbances and errors in the performance of controllers. The synthesis of the control system is based on the solution of a system of linear matrix inequalities. Based on the combination of a control method with iterative learning and a control method that takes into account failures in controllers, a method of constructing a fault-tolerant control system for the cyclic formation of carbon products has been synthesized to ensure acceptable operation of the control object in abnormal conditions. The control system has been synthesized by solving a system of linear matrix inequalities with the MATLAB software. In the future, it is necessary to consider optimal settings of the proposed control system and examine its effectiveness in comparison with conventional fault-tolerant systems for non-cyclic processes.

2019 ◽  
Vol 9 (2) ◽  
pp. 276 ◽  
Author(s):  
Yugong Luo ◽  
Yun Hu ◽  
Fachao Jiang ◽  
Rui Chen ◽  
Yongsheng Wang

To solve the problems with the existing active fault-tolerant control system, which does not consider the cooperative control of the drive system and steering system or accurately relies on the vehicle model when one or more motors fail, a multi-input and multi-output model-free adaptive active fault-tolerant control method for four-wheel independently driven electric vehicles is proposed. The method, which only uses the input/output data of the vehicle in the control system design, is based on a new dynamic linearization technique with a pseudo-partial derivative, aimed at solving the complex and nonlinear issues of the vehicle model. The desired control objectives can be achieved by the coordinated adaptive fault-tolerant control of the drive and steering systems under different failure conditions of the drive system. The error convergence and input-output boundedness of the control system are proven by means of stability analysis. Finally, simulations and further experiments are carried out to validate the effectiveness and real-time response of the fault-tolerant system in different driving scenarios. The results demonstrate that our proposed approach can maintain the longitudinal speed error (within 3%) and lateral stability, thereby improving the safety of the vehicles.


Author(s):  
Jacob D. Hostettler ◽  
Xin Wang

For advanced control applications, research into the use of linear matrix inequalities has yielded a notable amount of work in the area of nonlinear systems. Linear Matrix Inequalities can be formed through the application of desired performance criteria to a general system. By proper selection of a Lyapunov energy function, sufficient conditions to satisfy the performance objectives can be realized. The performance criteria, typically chosen for the application, define the objectives associated with the control. This work presents a control method for discrete-time systems with finite-time boundedness and H∞ performance criteria. The design of the controller corresponds to a system existing with bounded model uncertainties, and in the presence of L2 type external disturbances. Through the use of a linear state feedback control, sufficient conditions which guarantee the finite-time stability and H∞ performance objectives are achieved via the solution of a Linear Matrix Inequality. MATLAB application and simulation is carried out using the field oriented control of a permanent magnet synchronous generator in order to effectively demonstrate the effectiveness of this control strategy in the wind energy conversion system application.


2007 ◽  
Vol 11 (2) ◽  
pp. 149-152
Author(s):  
Yohei Nasuno ◽  
Etsuro Shimizu ◽  
Masanori Ito ◽  
Ikuo Yamamoto ◽  
Satoshi Tsukioka ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Xiaogong Lin ◽  
Heng Li ◽  
Anzuo Jiang ◽  
Juan Li

An integrated fault estimation and fault-tolerant control scheme is developed in this paper for dynamic positioning of ships in the presence of an actuator fault. First, an auxiliary derivative output of dynamic positioning ships is constructed in order to satisfy the so-called observer matching condition, and a high-gain observer is designed to exactly estimate the auxiliary derivative outputs. Then, a fault-tolerant controller is developed for dynamic positioning ships based on the iterative learning observer. By means of Lyapunov–Krasovskii stability theory, it is proved that the proposed fault-tolerant controller is able to estimate the total fault effects and states of ships accurately via the iterative learning observer and also to stabilize the closed-loop system. In addition, the parameter design of the proposed fault-tolerant control system can be conveniently solved in terms of linear matrix inequalities. Finally, simulation studies for dynamic positioning ships with actuator faults are carried out, and the results validate the effectivity of the proposed fault-tolerant control scheme.


Sign in / Sign up

Export Citation Format

Share Document