scholarly journals Genetic Fidelity Study of the in vitro Regenerated Plants in LA Hybrids of Lilium cv. Pavia

Author(s):  
Asm ita ◽  
S.S. Sindhu ◽  
M. Jayanthi ◽  
M.R. Dhiman ◽  
M.K. Singh ◽  
...  
Author(s):  
Asmaa Abdelsalam ◽  
Ehab Mahran ◽  
Kamal Chowdhury ◽  
Arezue Boroujerdi

Abstract Background Anarrhinum pubescens Fresen. (Plantaginaceae) is a rare plant, endemic to the Saint Catherine area, of South Sinai, Egypt. Earlier studies have reported the isolation of cytotoxic and anti-cholinesterase iridoid glucosides from the aerial parts of the plant. The present study aimed to investigate the chemical profiling of the wild plant shoots as well as establish efficient protocols for in vitro plant regeneration and proliferation with further assessment of the genetic stability of the in vitro regenerated plants. Results Twenty-seven metabolites have been identified in wild plant shoots using the Nuclear Magnetic Resonance (NMR) spectroscopy. The metabolites include alkaloids, amino acids, carbohydrates, organic acids, vitamins, and a phenol. In vitro propagation of the plant was carried out through nodal cutting-micropropagation and leaf segment-direct organogenesis. The best results were obtained when nodal cutting explants were cultured on Murashige and Skoog medium with Gamborg B5 vitamins supplemented with 6-benzylaminopurine (BAP) (1.0 mg/L) and naphthaleneacetic acid (NAA) (0.05 mg/L), which gave a shoot formation capacity of 100% and a mean number of shoots of 27.67 ± 1.4/explant. These shoots were successfully rooted and transferred to the greenhouse and the survival rate was 75%. Genetic fidelity evaluation of the micropropagated clones was carried out using random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) molecular markers. Jaccard’s similarity coefficient indicated a similarity as high as 98% and 95% from RAPD and ISSR markers, respectively. Conclusions This study provides the chemical profiling of the aerial part of Anarrhinum pubescens. Moreover, in vitro regeneration through different tissue culture techniques has been established for mass propagation of the plant, and the genetic fidelity of the in vitro regenerated plants was confirmed as well. Our work on the in vitro propagation of A. pubescens will be helpful in ex situ conservation and identification of bioactive metabolites.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 712
Author(s):  
Marzena Nowakowska ◽  
Žaklina Pavlović ◽  
Marcin Nowicki ◽  
Sarah L. Boggess ◽  
Robert N. Trigiano

Helianthus verticillatus (Asteraceae), whorled sunflower, is a perennial species restricted to a few locations in the Southeastern United States. Habitat loss has caused H. verticillatus to become rare, and since 2014, it has been federally listed as an endangered species. As a part of the recovery plan for the restoration and protection of H. verticillatus, an efficient micropropagation protocol based on axillary shoot proliferation was developed. Various concentrations of 6-benzylaminopurine (BAP; 0 to 4.44 µM) were examined for their morphogenetic potential in the regeneration of six genotypes of H. verticillatus from the nodal explants derived from greenhouse-grown plants. Both the BAP concentration and genotype had significant effects on the regeneration capacity of H. verticillatus. Although the induced buds were observed on ½-strength Murashige and Skoog medium without plant growth regulators, a higher rate of induction and bud development were achieved on media with either 0.88 or 2.22 µM BAP, regardless of the genotype. Successful rooting of the induced shoots was achieved within four weeks after the transfer from the induction medium to the fresh ½-strength MS medium, but the rooting efficiency was dependent on the plant’s genetic background. Regenerated plantlets, with well-developed shoots and roots, were acclimatized successfully to greenhouse conditions with a 97% survival rate. Simple sequence repeats (SSRs) markers were employed to assess the genetic uniformity of the micropropagated plants of H. verticillatus. No extraneous bands were detected between regenerants and their respective donor plants, confirming the genetic fidelity and stability of regenerated plants. To our knowledge, the protocol developed in this study is the first such report for this endangered species.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1077C-1077
Author(s):  
Wenhao Dai ◽  
Victoria Magnusson ◽  
Andrea Swanberg

Many woody plants, including some birch species, can be cloned using such in vitro techniques as pre-existing meristem culture, organogenesis, and embryogenesis. However, clonal fidelity of in vitro-derived plants is always a big concern because somaclonal variations may be induced during the entire in vitro process. To address this issue, we used random amplified polymorphic DNA (RAPD) markers to determine the genetic stability of in vitro-propagated plants of Betula platyphylla `Fargo'. Forty-two greenhouse-grown birch plants derived from a 10-year shoot tip culture (shoot-derived) and 42 in vitro plants regenerated from leaf tissues (regenerated) were randomly selected and evaluated for their genetic fidelity by RAPD. To date, 20 primers (C1-C20, Operon Technologies) were screened for all 84 plants. Only strong bands that are conservative were scored. Each primer generated a unique set of amplification products. Most of scoreable bands are ranged from 350 to 1800 bp. A total of 3696 fragments were amplified from 42 shoot-derived plants by all 20 primers with an average of 4.4 bands per primer, in which 6 primers produced polymorphic bands, indicating some genetic variations within shoot-derived plants. Nineteen out of 20 primers yielded 2772 clear and reproducible bands (an average of 3.47 per primer) from 42 regenerated plants with no significant variations being detected. Our preliminary results showed that in vitro regenerated plants are genetically uniform. However, a long-term tissue culture might result in a few genetic variations of birch species.


2016 ◽  
Vol 58 (2) ◽  
pp. 29-43 ◽  
Author(s):  
Anna Jesionek ◽  
Adam Kokotkiewicz ◽  
Paulina Wlodarska ◽  
Natalia Filipowicz ◽  
Adam Bogdan ◽  
...  

Abstract Rhododendron tomentosum Harmaja (formerly Ledum palustre L.) is a medicinal peat bog plant native to northern Europe, Asia and North America. This plant has a distinctive aroma thanks to the presence of essential oil, to which it also owes its anti-inflammatory, analgesic, antimicrobial and insecticidal properties. However, in Europe R. tomentosum is classified as an endangered species, mainly due to degradation of peatlands. In the present work, the micropropagation protocol for R. tomentosum was established for the first time, providing both an ex situ conservation tool and a means of continuous production of in vivo and in vitro plant material for further studies. R. tomentosum microshoots were initiated from leaf explants and further multiplied using Schenk-Hildebrandt (SH) medium supplemented with 9.84 μM 2iP and 1.00 μM TDZ. The shoots were elongated on the SH medium supplemented with 24.6 μM 2iP and subsequently rooted using the perlite substrate saturated with half-strength Woody Plant medium supplemented with 1.0% sucrose and 4.92 μM IBA. The regenerated plants were hardened on the phytohormone-free SH medium and acclimatized using 3:1:1 deacidified peat:perlite:gravel substrate. The identity of the mother plant was confirmed at morphological and molecular levels and Random Amplified Polymorphic DNA (RAPD) method was implemented to assess the genetic fidelity of the regenerants. The essential oil content of the maternal plant, in vitro shoots and the regenerants was determined by steam-distillation, and the obtained volatile fractions were analyzed by GC/MS.


Author(s):  
Sathish Shekhappa Kadapatti ◽  
Hosakatte Niranjana Murthy

Abstract Background Andrographis alata (Vahl) Nees is a medicinal plant which was reported to have the highest concentration of neoandrographolide that has several therapeutic values. Natural populations of Andrographis alata are dwindling due to destruction of natural habitat and over exploitation. Therefore, in vitro propagation of Andrographis alata was undertaken, and successful method is presented here. Results Micropropagation of Andrographis alata was realized on MS nutrient medium augmented with BAP (10 μM), and multiple shoots were regenerated from nodal explants. Induction of roots was attained from shoots on ¼ concentration of MS nutrient medium supplemented with IBA (1 μM). Randomly amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analysis showed that there is genetic fidelity in the regenerated plants. Reverse phase high performance liquid chromatographic analysis of regenerated plants showed the presence of neoandrographolide, equivalent to that of mother plants. Conclusions Successful in vitro regeneration of Andrographis alata is presented here, and it is quite useful for its mass multiplication. The micropropagated plants are useful for restoration of plants in nature and for utilization by the pharmaceutical industry for extraction of neoandrographolide.


Sign in / Sign up

Export Citation Format

Share Document