Genetic fidelity assessment of long term in vitro shoot cultures and regenerated plants in Japanese plum cvs Santa Rosa and Frontier through RAPD, ISSR and SCoT markers

Author(s):  
Manisha Thakur ◽  
Rakshandha ◽  
Vishal Sharma ◽  
Anjali Chauhan
1970 ◽  
Vol 18 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Rituparna Kundu Chaudhuri ◽  
Timir Baran Jha

In vitro germplasms of ipecac (Cephaelis ipecacuanha Rich.), an important medicinal plant, maintained through reduced growth conditions for more than 12-years, were used as source material for micropropagation. MS with different combinations of Kn (2 mg/l), BAP (2 mg/l), 2iP (2-3 mg/l), NAA (0.2 mg/l) and adenine (40-100 mg/l) as additive was used to induce fresh multiplication of shoots from the nodal meristems and direct shoot bud initiation on the internodal segments. Complete plant regeneration has been achieved from such long term cultures. Regenerated plants maintained their phenotypic and chromosomal stability. Eighty per cent hardened plants, survived in the field condition, are growing well and 25% of them produced flowers within one year. Long term preservation through reduced growth conditions and successful regeneration of morphologically stable plants with stable chromosome numbers (2n = 22) from such long term cultures of ipecae plants.  Key words: Long term culture, Ipecac, micropropagation, flowering D.O.I. 10.3329/ptcb.v18i2.3646 Plant Tissue Cult. & Biotech. 18(2): 157-164, 2008 (December)


2019 ◽  
pp. 57-67
Author(s):  
T.M. Tabatskaya ◽  
N.I. Vnukova

A technique for the long-term (up to 27 years) in vitro storage of valuable birch genotypes under normal (25 °C, 2.0 klx, 16-h day and 8-h night) and low temperature (4 °C, 0.5 klx, 6-h day and 18-h night) growing conditions on hormone-free media has been described. The study explored for the first time the influence of different strategies to store the clones of Betula pubescens and B. pendula var. сarelica (6 genotypes) on the regenerative capacity of collection samples, adaptive potential of regenerated plants and plant production by the in vitro and ex vitro techniques. It was established that both storage strategies provided a persistently high survival rate (82-100%) and regenerative capacity of in vitro shoots (the multiplication coefficient of 4.2-6.3 and rhizogenic activity of 90-100%). The clones retained their characteristics of height growth under the in vitro and ex vitro conditions, and demonstrated intraclonal homogeneity and lack of signs of somaclonal variability. The plants showed substantial interspecific differences at the stage of multiplication and transfer to the greenhouse. The highest percentage of acclimated plants (75-98% depending on the clone genotype) was obtained after planting of micro plants straight in the greenhouse, which simplified the technology and made plant production less costly. long-term in vitro storage, birch, species, genotype, micropropagation, ex vitro adaptation, plant material


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 670
Author(s):  
Katalin Magyar-Tábori ◽  
Nóra Mendler-Drienyovszki ◽  
Alexandra Hanász ◽  
László Zsombik ◽  
Judit Dobránszki

In general, in vitro virus elimination is based on the culture of isolated meristem, and in addition thermotherapy, chemotherapy, electrotherapy, and cryotherapy can also be applied. During these processes, plantlets suffer several stresses, which can result in low rate of survival, inhibited growth, incomplete development, or abnormal morphology. Even though the in vitro cultures survive the treatment, further development can be inhibited; thus, regeneration capacity of treated in vitro shoots or explants play also an important role in successful virus elimination. Sensitivity of genotypes to treatments is very different, and the rate of destruction largely depends on the physiological condition of plants as well. Exposure time of treatments affects the rate of damage in almost every therapy. Other factors such as temperature, illumination (thermotherapy), type and concentration of applied chemicals (chemo- and cryotherapy), and electric current intensity (electrotherapy) also may have a great impact on the rate of damage. However, there are several ways to decrease the harmful effect of treatments. This review summarizes the harmful effects of virus elimination treatments applied on tissue cultures reported in the literature. The aim of this review is to expound the solutions that can be used to mitigate phytotoxic and other adverse effects in practice.


Author(s):  
Asmaa Abdelsalam ◽  
Ehab Mahran ◽  
Kamal Chowdhury ◽  
Arezue Boroujerdi

Abstract Background Anarrhinum pubescens Fresen. (Plantaginaceae) is a rare plant, endemic to the Saint Catherine area, of South Sinai, Egypt. Earlier studies have reported the isolation of cytotoxic and anti-cholinesterase iridoid glucosides from the aerial parts of the plant. The present study aimed to investigate the chemical profiling of the wild plant shoots as well as establish efficient protocols for in vitro plant regeneration and proliferation with further assessment of the genetic stability of the in vitro regenerated plants. Results Twenty-seven metabolites have been identified in wild plant shoots using the Nuclear Magnetic Resonance (NMR) spectroscopy. The metabolites include alkaloids, amino acids, carbohydrates, organic acids, vitamins, and a phenol. In vitro propagation of the plant was carried out through nodal cutting-micropropagation and leaf segment-direct organogenesis. The best results were obtained when nodal cutting explants were cultured on Murashige and Skoog medium with Gamborg B5 vitamins supplemented with 6-benzylaminopurine (BAP) (1.0 mg/L) and naphthaleneacetic acid (NAA) (0.05 mg/L), which gave a shoot formation capacity of 100% and a mean number of shoots of 27.67 ± 1.4/explant. These shoots were successfully rooted and transferred to the greenhouse and the survival rate was 75%. Genetic fidelity evaluation of the micropropagated clones was carried out using random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) molecular markers. Jaccard’s similarity coefficient indicated a similarity as high as 98% and 95% from RAPD and ISSR markers, respectively. Conclusions This study provides the chemical profiling of the aerial part of Anarrhinum pubescens. Moreover, in vitro regeneration through different tissue culture techniques has been established for mass propagation of the plant, and the genetic fidelity of the in vitro regenerated plants was confirmed as well. Our work on the in vitro propagation of A. pubescens will be helpful in ex situ conservation and identification of bioactive metabolites.


Author(s):  
Asm ita ◽  
S.S. Sindhu ◽  
M. Jayanthi ◽  
M.R. Dhiman ◽  
M.K. Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document