in vitro shoot cultures
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 2)

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2584
Author(s):  
Malgorzata Podwyszynska ◽  
Katarzyna Mynett ◽  
Monika Markiewicz ◽  
Stanisław Pluta ◽  
Agnieszka Marasek-Ciolakowska

To expand the gene pool and introduce new traits to the tetraploid cultivars of Vaccinium corymbosum from wild diploid species V. myrtillus, it is necessary to double the chromosome number in diploid species in order to overcome a post zygotic crossing barrier and a strong triploid block, existing within the genus Vaccinium. Five genetically diverse bilberry genotypes were selected from 21 accessions taken from the breeding collection of the National Institute of Horticultural Research (Skierniewice, Poland) for this study. The bilberry genotypes were derived from the Polish locations of Bolimów Landscape Park, Budy Grabskie and forest complex Zwierzyniec (Łódź Province), and habitats in Norway. The selection of genotypes was made based on the analysis of amplified fragment length polymorphism (AFLP-PCR). Analysis of the Jaccard similarity indexes and the UPGMA method revealed that the examined accessions formed two main groups on the dendrogram. The first group consisted of accessions from Norway, while the second group agglomerated Polish accessions. A further two classes were distinguished in the Polish group: the first included accessions from Budy Grabskie and the second from Zwierzyniec, located ca. 9 km from Budy Grabskie. In order to obtain plant material for in vitro polyploidisation, in vitro shoot cultures of the selected accessions were initiated and multiplied. Both antimitotics used, colchicine and APM, induced tetraploids for all of the accessions. The obtained tetraploids were multiplied, rooted ex vitro and grown in a greenhouse and then in a field. The first flowering was observed in 1.5-year-old plants, either diploid or tetraploid. Diploids bloomed slightly earlier and more profusely than tetraploid plants. Compared to diploids, autotetraploids had significantly larger flowers by ca. 64% and larger pollen tetrads by ca. 35%. The germination capacity of pollen tetrads was high in tetraploids (87.8%), although slightly lower than in diploids (94.3%). After pollinating the flowers of three highbush blueberry cultivars with pollen from the bilberry tetraploid accession, J-4-4x, the plants formed fruits, some of which contained properly formed seeds. The effectiveness of interspecific crossing between V. corymbosum and tetraploid V. myrtillus, defined as the percentage of obtained seedlings in relation to the number of pollinated flowers, was highest (53.3%) in the blueberry ‘Liberty’, and lower in ‘Bluecrop’ and ‘Northland’, 14.8% and 10.0%, respectively. Before using the seedlings for further breeding, their hybridity will be confirmed by molecular markers and the phenotype will be evaluated.


2021 ◽  
Vol 13 (4) ◽  
pp. 11024
Author(s):  
Thankappan S. PREETHA ◽  
Achuthan S. HEMANTHAKUMAR ◽  
Peringatulli N. KRISHNAN

Kaempferia galanga L. is an endangered multi-purpose medicinal plant in Family Zingiberaceae, the rhizomes of which are used for several ayurvedic formulations. Encapsulation-dehydration (ED) method was optimized for cryopreservation of shoot tips of K. galanga. Shoot tips (STs) bearing the apical meristem dissected from the established in vitro shoot cultures were preconditioned in MS+0.4 M sucrose prior to encapsulation in calcium alginate and the beads subsequently transferred to MS liquid+0.3 M sucrose for 3 days afterward dehydration inside the laminar airflow for 4 hours upon rapid freezing in LN and rapid thawing produced maximum 62.2% survival and 46.7% regeneration rates. Shoot regeneration was observed from the apical meristems exclusive of intermediary callus phase. The plantlets regenerated from cryopreserved STs transferred to the field were phenotypically analogous with the mother plant.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6427
Author(s):  
Sandra Gonçalves ◽  
Inês Mansinhos ◽  
Raquel Rodríguez-Solana ◽  
Gema Pereira-Caro ◽  
José Manuel Moreno-Rojas ◽  
...  

Nanoparticles (NPs) recently emerged as new chemical elicitors acting as signaling agents affecting several processes in plant metabolism. The aim of this work was to investigate the impact of the addition of copper oxide (CuO), zinc oxide (ZnO) and iron oxide (Fe3O4) NPs (<100 nm) at different concentrations (1, 5 and 10 mg/L) to the culture media on several morphological, physiological and -biochemical parameters of in vitro shoot cultures of Lavandula viridis L’Hér and Thymus lotocephalus G. López and R. Morales (Lamiaceae), as well as on phenolic profile and bioactivity (antioxidant and enzyme inhibition capacities). Although some decreases in shoot number and length were observed in response to NPs, biomass production was not affected or was improved in both species. Most NPs treatments decreased total chlorophyll and carotenoid contents and increased malondialdehyde levels, an indicator of lipid peroxidation, in both species. HPLC-HR-MS analysis led to the identification of thirteen and twelve phenolic compounds, respectively, in L. viridis and T. lotocephalus extracts, being rosmarinic acid the major compound found in all the extracts. ZnO and Fe3O4 NPs induced an increase in total phenolic and rosmarinic acid contents in T. lotocephalus extracts. Additionally, some NPs treatments also increased antioxidant activity in extracts from this species and the opposite was observed for L. viridis. The capacity of the extracts to inhibit tyrosinase, acetylcholinesterase and butyrylcholinesterase enzymes was not considerably affected. Overall, NPs had a significant impact on different parameters of L. viridis and T. lotocephalus in vitro shoot cultures, although the results varied with the species and NPs type.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5532
Author(s):  
Małgorzata Kikowska ◽  
Barbara Thiem ◽  
Karolina Jafernik ◽  
Marta Klimek-Szczykutowicz ◽  
Elżbieta Studzińska-Sroka ◽  
...  

The present work was aimed at studying the potential of elicitation on the accumulation of phenolic compounds in in vitro shoot cultures of Eryngium alpinum L., a protected plant from the Apiaceae family. The study examined the influence of (+)-usnic acid on the biomass growth as well as on the biosynthesis of the desired flavonoids and phenolic acids in the cultured microshoots. The phenolic compound content was determined by HPLC-DAD. The flavonoid of the highest concentration was isoquercetin, and the phenolic acids of the highest amount were rosmarinic acid, caffeic acid and 3,4-dihydroxyphenylacetic acid, both in the non-elicited and elicited biomass. Isoquercetin accumulation was efficiently increased by a longer elicitation with a lower concentration of lichenic compound (107.17 ± 4.67 mg/100 g DW) or a shorter elicitation with a higher concentration of acid (127.54 ± 11.34 and 108.37 ± 12.1 mg/100 g DW). Rosmarinic acid production generally remained high in all elicited and non-elicited microshoots. The highest content of this acid was recorded at 24 h of elicitation with 3.125 µM usnic acid (512.69 ± 4.89 mg/100 g DW). The process of elicitation with (+)-usnic acid, a well-known lichenic compound with allelopathic nature, may therefore be an effective technique of enhancing phenolic compound accumulation in alpine eryngo microshoot biomass.


2021 ◽  
Author(s):  
Trevor Malcolm Fenning ◽  
Margaret O’Donnell ◽  
Katharine Preedy ◽  
Aurélia Bézanger ◽  
David Kenyon ◽  
...  

Abstract There is renewed in the tissue culture of the European ash in response to ash dieback disease. Shoot cultures were established for 135 clones from 13 ash mother trees from the UK’s national collection, on DKW medium with 3ppm of BAP. Most were generated from hypocotyl pieces excised from sterile germinating mature ash seeds. Another 24 clones were lost to bacterial contamination, which was identified as Bacillus megaterium or possibly a close relative. These cultures were disposed of as it was difficult to eliminate the bacterium from them. The ability of all of the cultures to produce rooted plants capable of normal growth under nursery conditions was tested by exposing excised shoots to DKW medium with 3ppm IBA for 2 weeks, followed by 4–6 weeks on hormone-free medium. Across all experiments 41.5% of uncontaminated plants and 11.6% of contaminated plants produced roots in-vitro. Although differences were observed in the rooting ability between clones, families and from trial to trial, the only significant effect was whether the shoots were contaminated or not. In addition, 92.6% of the uncontaminated plants survived the transfer to the nursery as opposed to 62.1% of the contaminated plants. We show here that a single methodology can be successfully used to produce large numbers of clonal ash plants on demand from a wide cross-section of the UK’s ash breeding population, although contamination issues will need to be closely monitored for this approach to be used as part of the strategy for combating overcoming ash dieback disease.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 670
Author(s):  
Katalin Magyar-Tábori ◽  
Nóra Mendler-Drienyovszki ◽  
Alexandra Hanász ◽  
László Zsombik ◽  
Judit Dobránszki

In general, in vitro virus elimination is based on the culture of isolated meristem, and in addition thermotherapy, chemotherapy, electrotherapy, and cryotherapy can also be applied. During these processes, plantlets suffer several stresses, which can result in low rate of survival, inhibited growth, incomplete development, or abnormal morphology. Even though the in vitro cultures survive the treatment, further development can be inhibited; thus, regeneration capacity of treated in vitro shoots or explants play also an important role in successful virus elimination. Sensitivity of genotypes to treatments is very different, and the rate of destruction largely depends on the physiological condition of plants as well. Exposure time of treatments affects the rate of damage in almost every therapy. Other factors such as temperature, illumination (thermotherapy), type and concentration of applied chemicals (chemo- and cryotherapy), and electric current intensity (electrotherapy) also may have a great impact on the rate of damage. However, there are several ways to decrease the harmful effect of treatments. This review summarizes the harmful effects of virus elimination treatments applied on tissue cultures reported in the literature. The aim of this review is to expound the solutions that can be used to mitigate phytotoxic and other adverse effects in practice.


2020 ◽  
Vol 158 ◽  
pp. 113050
Author(s):  
Ewelina Piątczak ◽  
Łukasz Kuźma ◽  
Weronika Kozłowska ◽  
Paweł Lisiecki ◽  
Magdalena Szemraj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document