scholarly journals Frequency Analysis for One day to Six Consecutive Days of Annual Maximum Rainfall for Mulde, Dist: Sindhudurg

Author(s):  
S.S. Idate ◽  
D.M. Mahale ◽  
H.N. Bhange ◽  
K.D. Gharde
MAUSAM ◽  
2021 ◽  
Vol 72 (2) ◽  
pp. 359-372
Author(s):  
LOVEPREET KAUR ◽  
ANVESHA ANVESHA ◽  
MANISH KUMAR ◽  
SUMAN LATA VERMA ◽  
PRAVENDRA KUMAR

2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Zamir Hussain ◽  
Imran Rafi Khan ◽  
Maryum Nisar ◽  
Uzma Nawaz ◽  
Muhammad Shafeeq ul Rehman Khan

2011 ◽  
Vol 35 (6) ◽  
pp. 2127-2134 ◽  
Author(s):  
Álvaro José Back ◽  
Alan Henn ◽  
José Luiz Rocha Oliveira

Knowledge of intensity-duration-frequency (IDF) relationships of rainfall events is extremely important to determine the dimensions of surface drainage structures and soil erosion control. The purpose of this study was to obtain IDF equations of 13 rain gauge stations in the state of Santa Catarina in Brazil: Chapecó, Urussanga, Campos Novos, Florianópolis, Lages, Caçador, Itajaí, Itá, Ponte Serrada, Porto União, Videira, Laguna and São Joaquim. The daily rainfall data charts of each station were digitized and then the annual maximum rainfall series were determined for durations ranging from 5 to 1440 min. Based on these, with the Gumbel-Chow distribution, the maximum rainfall was estimated for durations ranging from 5 min to 24 h, considering return periods of 2, 5, 10, 20, 25, 50, and 100 years,. Data agreement with the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test, at 5 % significance level. For each rain gauge station, two IDF equations of rainfall events were adjusted, one for durations from 5 to 120 min and the other from 120 to 1440 min. The results show a high variability in maximum intensity of rainfall events among the studied stations. Highest values of coefficients of variation in the annual maximum series of rainfall were observed for durations of over 600 min at the stations of the coastal region of Santa Catarina.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1468 ◽  
Author(s):  
Wooyoung Na ◽  
Chulsang Yoo

This study evaluated five models of rainfall temporal distribution (i.e., the Yen and Chow model, Mononobe model, alternating block method, Huff model, and Keifer and Chu model), with the annual maximum rainfall events selected from Seoul, Korea, from 1961 to 2016. Three different evaluation measures were considered: the absolute difference between the rainfall peaks of the model and the observed, the root mean square error, and the pattern correlation coefficient. Also, sensitivity analysis was conducted to determine whether the model, or the randomness of the rainfall temporal distribution, had the dominant effect on the runoff peak flow. As a result, the Keifer and Chu model was found to produce the most similar rainfall peak to the observed, the root mean square error was smaller for the Yen and Chow model and the alternating block method, and the pattern correlation was larger for the alternating block method. Overall, the best model to approximate the annual maximum rainfall events observed in Seoul, Korea, was found to be the alternating block method. Finally, the sensitivity of the runoff peak flow to the model of rainfall temporal distribution was found to be much higher than that to the randomness of the rainfall temporal distribution. In particular, in small basins with a high curve number (CN) value, the sensitivity of the runoff peak flow to the randomness of the rainfall temporal distribution was found to be insignificant.


Sign in / Sign up

Export Citation Format

Share Document