scholarly journals Review on the Role of Biological Nitrogen Fixation in the Environmental Terms

Author(s):  
Diptimayee Dash ◽  
Sonali Deole
2020 ◽  
Vol 21 (16) ◽  
pp. 5926
Author(s):  
Wei Dong ◽  
Yuguang Song

Nitrogen is essential for the growth of plants. The ability of some plant species to obtain all or part of their requirement for nitrogen by interacting with microbial symbionts has conferred a major competitive advantage over those plants unable to do so. The function of certain flavonoids (a group of secondary metabolites produced by the plant phenylpropanoid pathway) within the process of biological nitrogen fixation carried out by Rhizobium spp. has been thoroughly researched. However, their significance to biological nitrogen fixation carried out during the actinorhizal and arbuscular mycorrhiza–Rhizobium–legume interaction remains unclear. This review catalogs and contextualizes the role of flavonoids in the three major types of root endosymbiosis responsible for biological nitrogen fixation. The importance of gaining an understanding of the molecular basis of endosymbiosis signaling, as well as the potential of and challenges facing modifying flavonoids either quantitatively and/or qualitatively are discussed, along with proposed strategies for both optimizing the process of nodulation and widening the plant species base, which can support nodulation.


2015 ◽  
Vol 198 (4) ◽  
pp. 633-643 ◽  
Author(s):  
Marie-Christine Hoffmann ◽  
Eva Wagner ◽  
Sina Langklotz ◽  
Yvonne Pfänder ◽  
Sina Hött ◽  
...  

ABSTRACTRhodobacter capsulatusis capable of synthesizing two nitrogenases, a molybdenum-dependent nitrogenase and an alternative Mo-free iron-only nitrogenase, enabling this diazotroph to grow with molecular dinitrogen (N2) as the sole nitrogen source. Here, the Mo responses of the wild type and of a mutant lacking ModABC, the high-affinity molybdate transporter, were examined by proteome profiling, Western analysis, epitope tagging, andlacZreporter fusions. Many Mo-controlled proteins identified in this study have documented or presumed roles in nitrogen fixation, demonstrating the relevance of Mo control in this highly ATP-demanding process. The levels of Mo-nitrogenase, NifHDK, and the Mo storage protein, Mop, increased with increasing Mo concentrations. In contrast, Fe-nitrogenase, AnfHDGK, and ModABC, the Mo transporter, were expressed only under Mo-limiting conditions. IscN was identified as a novel Mo-repressed protein. Mo control of Mop, AnfHDGK, and ModABC corresponded to transcriptional regulation of their genes by the Mo-responsive regulators MopA and MopB. Mo control of NifHDK and IscN appeared to be more complex, involving different posttranscriptional mechanisms. In line with the simultaneous control of IscN and Fe-nitrogenase by Mo, IscN was found to be important for Fe-nitrogenase-dependent diazotrophic growth. The possible role of IscN as an A-type carrier providing Fe-nitrogenase with Fe-S clusters is discussed.IMPORTANCEBiological nitrogen fixation is a central process in the global nitrogen cycle by which the abundant but chemically inert dinitrogen (N2) is reduced to ammonia (NH3), a bioavailable form of nitrogen. Nitrogen reduction is catalyzed by nitrogenases found in diazotrophic bacteria and archaea but not in eukaryotes. All diazotrophs synthesize molybdenum-dependent nitrogenases. In addition, some diazotrophs, includingRhodobacter capsulatus, possess catalytically less efficient alternative Mo-free nitrogenases, whose expression is repressed by Mo. Despite the importance of Mo in biological nitrogen fixation, this is the first study analyzing the proteome-wide Mo response in a diazotroph. IscN was recognized as a novel member of the molybdoproteome inR. capsulatus. It was dispensable for Mo-nitrogenase activity but supported diazotrophic growth under Mo-limiting conditions.


2016 ◽  
Vol 49 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Wansik Shin ◽  
Rashedul Islam ◽  
Abitha Benson ◽  
Manoharan Melvin Joe ◽  
Kiyoon Kim ◽  
...  

Author(s):  
Olubukola Oluranti Babalola ◽  
Oluwaseyi Samuel Olanrewaju ◽  
Teresa Dias ◽  
Caroline Fadeke Ajilogba ◽  
Funso Raphael Kutu ◽  
...  

2019 ◽  
Author(s):  
◽  
Nhung Thi Huyen Hoang

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Nitrogen is a macronutrient that is critical for plant growth and development because it provides the building blocks of nucleic acids, proteins, chlorophyll, and energy- transfer compounds, such as ATP. Although 78% of the atmosphere is diatomic nitrogen, this form is inert and unavailable to plants due to the strong nitrogen-nitrogen triple bond. Plants can only absorb nitrogen in the forms of NH4+ or NO3-. Most of the inorganic nitrogen available to crop plants is provided through fertilizers synthesized based on the Haber-Bosch process. This process converts atmospheric nitrogen (N2) into ammonia (NH3) by a reaction with hydrogen (H2) using a metal catalyst (iron) under high temperatures (~500 [degrees]C) and high pressures (150-300 bar). Ammonia production by this method consumes a lot of energy, which is derived from burning fossil fuels. Synthetic ammonia production by the Haber-Bosch process causes losses of biodiversity through eutrophication, soil acidification and global increase in N2O atmospheric concentration, which is the third most significant greenhouse gas. An alternative approach to provide a sustainable nitrogen source to plants without causing such damage to the environment is through biological nitrogen fixation between legume species and Rhizobium bacteria. The symbiotic interaction between legume plants and rhizobia results in the formation of root nodules, specialized organs within which rhizobia convert atmospheric nitrogen into ammonia for plant consumption. In return, the legume host plants provide rhizobia with photosynthate as a carbon source for their growth. The legume - Rhizobium symbiosis is a sophisticated process that requires numerous regulators including the 20-24 nucleotide-long microRNAs which negatively regulate the expression of their target messenger RNAs. In my study, we provide two examples that demonstrate the significant role of microRNAs in the symbiotic interplay between soybean, an important legume crop, and rhizobia. In the first example, our results suggest that gma-miR319i functions as a positive regulator of nodule number during the soybean - Bradyrhizobium symbiosis by targeting the TCP33 transcription factor. Overexpression and CRISPR/cas9-mediated gene mutation of gma-miR319i increased and reduced nodule number after rhizobial inoculation, respectively. gma-miR319i and TCP33 showed an inverse expression pattern in different stages of nodule development. TCP33 modulated nodule development in a gma-miR319i dependent manner. The expression of gma-miR319i and TCP33 was differentially regulated in one soybean mutant line that exhibits a hypernodulation phenotype. In the second example, we further investigated the mechanism by which two identical microRNAs, gma-miR171o and gma-miR171q, function in modulating the spatial and temporal aspects of soybean nodulation. Although sharing the identical mature sequence, gma-miR171o and gma-miR171q genes are divergent and show unique, tissue-specific expression patterns. The expression levels of the two miRNAs are negatively correlated with that of their target genes. Ectopic expression of these miRNAs in transgenic hairy roots resulted in a significant reduction in nodule formation. Both gma-miR171o and gma-miR171q target members of the GRAS transcription factor superfamily, namely GmSCL-6 and GmNSP2. Besides those two above-mentioned examples, we were able to generate and characterize an enhancer trap insertional mutant of the NODULATION SIGNALING PATHWAY 2 (NSP2) gene which is the target gene of Gma-miR171 and also an important regulator of nodulation. Overall, our study shows the importance of microRNAs in the regulation of nitrogen-fixing symbiosis. Our results contribute to efforts to fully understand the molecular mechanisms controlling the legume - Rhizobium interaction. Our ultimate hope is that the information gained through my studies can lead to an increased utilization of biological nitrogen fixation for sustainable agriculture and environment protection.


Sign in / Sign up

Export Citation Format

Share Document