scholarly journals The Sound Power Radiated by Some Axisymmetric Vibration Modes of a Guided Annular Plate

Author(s):  
Wojciech P. Rdzanek Jr.
1989 ◽  
Vol 28 (S1) ◽  
pp. 161 ◽  
Author(s):  
Yoshiro Tomikawa ◽  
Takehiro Takanon ◽  
Hiroshi Hirata ◽  
Toshiharu Ogasawara

1989 ◽  
Vol 28 (S2) ◽  
pp. 202 ◽  
Author(s):  
Takehiro Takano ◽  
Yoshiro Tomikawa ◽  
Toshiharu Ogasawara ◽  
Hiroshi Hirata

1961 ◽  
Vol 28 (4) ◽  
pp. 571-573 ◽  
Author(s):  
H. Garnet ◽  
M. A. Goldberg ◽  
V. L. Salerno

Torsional-vibration modes are uncoupled from the bending and extensional modes in thin shells of revolution. The solution for the uncoupled torsional modes then depends upon a linear second-order differential equation. The governing equation is subsequently solved for the frequencies of a conical shell. A tabulation of the first five frequencies for varying ratios of the terminal radii is presented. These frequencies are identical to those of an annular plate which has the same supports as the conical shell.


2017 ◽  
Vol 17 (09) ◽  
pp. 1750101 ◽  
Author(s):  
Jae-Hoon Kang

This paper is concerned with the axisymmetric free vibration analysis of a rotating annular plate with variable thickness by using the Ritz method. The rotating plate has a constant angular speed and subjected to a tensile centrifugal body force. The annular plate is fixed at the inner edge and free at the outer edge. Exact stresses, strains, and radial displacement of the rotating annular plate are obtained via plane elasticity. Presented herein are the natural frequencies and modes shapes for the rotating, nonuniform annular plate with various angular speeds and different ratios of the inner radius to the outer radius.


2015 ◽  
Vol 813-814 ◽  
pp. 910-914 ◽  
Author(s):  
R. Pramod ◽  
M.E. Shashi Kumar ◽  
S. Mohan Kumar

The study of the dynamic behavior of annular plates with circumferential cracks can find many applications in several machine components such as flywheels, clutch plates, compact discs etc. A crack on a structural member introduces a local increase of flexibility in that region then; this affects the static and dynamic characteristics. The effects of cracks on the dynamic characteristics of structures, especially on the natural frequencies and modes, were extensively studied. In this study, the natural frequencies of annular plates with circumferential cracks are investigated by using finite element method. The cracks were non-propagating and open. The annular plate with different cracks was subjected to different boundary conditions and final variation in the natural frequency was obtained, which was compared with the theoretical frequency and the change in the natural frequency was studied. The results of this study with improved elements are compared with the theoretical results in the literature. It is observed that the location and the number of cracks have various effects on the natural frequencies related to the vibration modes.


2015 ◽  
Vol 15 (06) ◽  
pp. 1450086 ◽  
Author(s):  
Yajuvindra Kumar

This article deals with the free axisymmetric vibration of two-directional functionally graded annular plates. Ceramic and metal are considered two constituents of the functionally graded material (FGM), which are graded through thickness and radial directions of the plate. The Chebyshev collocation technique and differential quadrature method are employed to derive the frequency equations for an annular plate with both edges clamped and another one with both edges simply supported. The results for nonhomogeneous isotropic annular plates are also presented. The accuracy and efficiency of the present approach are confirmed through comparison of the frequencies obtained for homogeneous isotropic annular plates. Identical results are obtained for the two methods used. The effects of volume fraction index, coefficient of radial variation, exponent of power law, inner to outer radii ratio, and boundary conditions are discussed on the first three natural frequencies. It is found that the frequency of a functionally graded annular plate is greater than that of a homogeneous annular plate.


Sign in / Sign up

Export Citation Format

Share Document