scholarly journals Soil carbon and nitrogen under different land-use and landscape loca-tions in central Brazil

2021 ◽  
Vol 9 (2) ◽  
pp. 178-186
Author(s):  
Fábio Luís de Souza Santos ◽  
Antônio Felipe Couto Júnior ◽  
Adriana Reatto ◽  
Éder de Souza Martins ◽  
Arminda Moreira de Carvalho ◽  
...  

In Central Brazil, plateaus, the most common geomorphologic form, have been undergoing intense conversion from native vegetation to pasture and agriculture in recent decades. We used carbon stable isotope ratios (δ13C) and nitrogen stable isotope ratios (δ15N) to assess possible changes in soil organic matter dynamics under such land use modifications. This study aimed to evaluate the differences in soil δ13C and δ15N and C and N stocks between native vegetation and agricultural or pasture areas in different locations of a plateau in the savannas of Central Brazil. We sampled soil up to 100 cm depth in pasture areas in the summit of the plateau and no-tillage and conventional tillage on the border of a plateau, as well as soils under native vegetation in both landscape locations. Both soil δ13C and δ15N, and C and N stocks showed no differences between land uses. The different relationships between δ15N and C/N ratio at different locations indicated distinct behavior of the soil organic matter between the summit and border of the plateau. Therefore, in addition to land-use, landscape location contributes to both δ13C and δ15N, and C and N stocks in the soil of the plateau.

2008 ◽  
Vol 28 (15) ◽  
pp. 1911-1919 ◽  
Author(s):  
Mireille Harmelin-Vivien ◽  
Véronique Loizeau ◽  
Capucine Mellon ◽  
Beatriz Beker ◽  
Denise Arlhac ◽  
...  

2013 ◽  
Vol 46 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Yeon-Jung Lee ◽  
◽  
Byung-Kwan Jeong ◽  
Yong-Sik Shin ◽  
Sung-Hwan Kim ◽  
...  

Animals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 69 ◽  
Author(s):  
Andrius Garbaras ◽  
Raminta Skipitytė ◽  
Justina Šapolaitė ◽  
Žilvinas Ežerinskis ◽  
Vidmantas Remeikis

Various studies have shown that stable isotope analysis has the potential to verify the geographic origin of foods and drinks. However, stable isotope composition is not always constant in the environment and can even change in the same area. Dairy products are of particular interest as a group of foods that play an important role in feeding the population. The composition of milk is fundamentally dependent on the feeding of the cows, and thereby on a particular environment. To better understand the amount of variation in δ18O, δ13C, and δ15N values in the milk from the same area, we measured stable isotope ratios in cow milk water, artesian water, and precipitation (δ18O) as well as in bulk milk samples (δ13C and δ15N) collected in 2014–2016. Different water and food sources were available during the winter (artesian water only and dry grass) and summer (artesian water and fresh grass), and spring and autumn seasons reflected transitional periods. Oxygen stable isotope ratios in milk water were relatively lower in winter and transitional seasons and higher in summer, showing the dependence on the main water source. δ13C values reflected particular food sources. This study shows the applicability of the stable isotope ratio method in linking cow milk to specific environments and reveals the amount of variation in stable isotope ratios in the same area. These results could be valuable for other studies on geographical origin determination of dairy products.


2008 ◽  
Vol 65 (10) ◽  
pp. 2191-2200 ◽  
Author(s):  
Christopher T. Solomon ◽  
Stephen R. Carpenter ◽  
James A. Rusak ◽  
M. Jake Vander Zanden

Carbon and nitrogen stable isotope ratios are increasingly used to study long-term food web change. Temporal variation at the base of the food web may impact the accuracy of trophic niche estimates, but data describing interannual baseline variation are limited. We quantified baseline variation over a 23-year period in a north-temperate lake and used a simulation model to examine how this variation might affect consumer trophic niche estimates. Interannual variation in C and N stable isotope ratios was significant for both benthic and pelagic primary consumer baselines. Long-term linear trends and shorter-term autoregressive patterns were apparent in the data. There were no correlations among benthic and pelagic C and N baselines. Simulations demonstrated that error in estimated fish trophic niches, but not bias, increased substantially when sampling of baselines was incomplete. Accurate trophic niche estimates depended more on accurate estimation of baseline time series than on accurate estimation of growth and turnover rates. These results highlight the importance of previous and continued efforts to constrain bias and error in long-term stable isotope food web studies.


Sign in / Sign up

Export Citation Format

Share Document