REVERSE TIME MIGRATION IN VTI MEDIA USING PSEUDO-ACUSTIC APPROXIMATIONS IN STAGGERED GRID

Author(s):  
Leandro Di Bartolo
Geophysics ◽  
2021 ◽  
pp. 1-78
Author(s):  
Zhiyuan Li ◽  
Youshan Liu ◽  
Guanghe Liang ◽  
Guoqiang Xue ◽  
Runjie Wang

The separation of P- and S-wavefields is considered to be an effective approach for eliminating wave-mode cross-talk in elastic reverse-time migration. At present, the Helmholtz decomposition method is widely used for isotropic media. However, it tends to change the amplitudes and phases of the separated wavefields compared with the original wavefields. Other methods used to obtain pure P- and S-wavefields include the application of the elastic wave equations of the decoupled wavefields. To achieve a high computational accuracy, staggered-grid finite-difference (FD) schemes are usually used to numerically solve the equations by introducing an additional stress variable. However, the computational cost of this method is high because a conventional hybrid wavefield (P- and S-wavefields are mixed together) simulation must be created before the P- and S-wavefields can be calculated. We developed the first-order particle velocity equations to reduce the computational cost. The equations can describe four types of particle velocity wavefields: the vector P-wavefield, the scalar P-wavefield, the vector S-wavefield, and the vector S-wavefield rotated in the direction of the curl factor. Without introducing the stress variable, only the four types of particle velocity variables are used to construct the staggered-grid FD schemes, so the computational cost is reduced. We also present an algorithm to calculate the P and S propagation vectors using the four particle velocities, which is simpler than the Poynting vector. Finally, we applied the velocity equations and propagation vectors to elastic reverse-time migration and angle-domain common-image gather computations. These numerical examples illustrate the efficiency of the proposed methods.


2016 ◽  
Author(s):  
Jinqiang Huang ◽  
Daojun Si ◽  
Zhenchun Li ◽  
Jianping Huang

Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. T359-T373
Author(s):  
Jeffrey Shragge ◽  
Tugrul Konuk

Numerical solutions of 3D isotropic elastodynamics form the key computational kernel for many isotropic elastic reverse time migration and full-waveform inversion applications. However, real-life scenarios often require computing solutions for computational domains characterized by non-Cartesian geometry (e.g., free-surface topography). One solution strategy is to compute the elastodynamic response on vertically deformed meshes designed to incorporate irregular topology. Using a tensorial formulation, we have developed and validated a novel system of semianalytic equations governing 3D elastodynamics in a stress-velocity formulation for a family of vertically deformed meshes defined by Bézier interpolation functions between two (or more) nonintersecting surfaces. The analytic coordinate definition also leads to a corresponding analytic free-surface boundary condition (FSBC) as well as expressions for wavefield injection and extraction. Theoretical examples illustrate the utility of the tensorial approach in generating analytic equations of 3D elastodynamics and the corresponding FSBCs for scenarios involving free-surface topography. Numerical examples developed using a fully staggered grid with a mimetic finite-difference formulation demonstrate the ability to model the expected full-wavefield behavior, including complex free-surface interactions.


2014 ◽  
Author(s):  
Liu Wenqing ◽  
Wang Yuchao ◽  
Yong Xueshan ◽  
Wang Yanxiang ◽  
Shao Xichun

2016 ◽  
Vol 13 (4) ◽  
pp. 608-613 ◽  
Author(s):  
Xiao-Dong Sun ◽  
Zhong-Hui Ge ◽  
Zhen-Chun Li ◽  
Ying Hong

Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. S317-S327 ◽  
Author(s):  
Pengfei Yu ◽  
Jianhua Geng

Quasi-P (qP)-wave separation and receiver-side records back extrapolation are two key technologies commonly applied in vertical transverse isotropic (VTI) media for ocean-bottom 4C seismic data pseudoacoustic-wave reverse time migration (RTM). However, it remains problematic to quickly and accurately separate the qP-wave in VTI media. The qP-wave can be fast separated by synthesizing pressure in weakly anisotropic media. Like the derivation of acoustic-elastic coupled equations (AECEs) in an isotropic medium, novel AECEs can also be obtained in VTI media. Based on these novel coupled equations, we have developed a method for pseudoacoustic-wave RTM of ocean-bottom 4C seismic data. Three synthetic examples are provided to illustrate the validity and effectiveness of our method. The results indicate that our method possesses three advantages for ocean-bottom 4C data compared with the conventional method when conducting pseudoacoustic-wave RTM in VTI media. First, these new coupled equations are able to obtain a qP-wave during wavefield propagation. Second, ocean-bottom 4C records can be implemented strictly for receiver-side tensorial extrapolation with undulating topography of the seafloor, which brings benefits for suppressing artifacts in pseudoacoustic-wave RTM and improving imaging quality. Finally, our method is fairly robust to coarse sampling.


Sign in / Sign up

Export Citation Format

Share Document