FINITE ELEMENT STRUCTURAL ANALYSIS TOWARDS THE STRUCTURAL HEALTH MONITORING OF A REMOTELY PILOTED AIRCRAFT WING SPAR

Author(s):  
Dioser F. dos Santos ◽  
Tiago dos Santos
2020 ◽  
Vol 145 ◽  
pp. 106972 ◽  
Author(s):  
Panagiotis Seventekidis ◽  
Dimitrios Giagopoulos ◽  
Alexandros Arailopoulos ◽  
Olga Markogiannaki

2017 ◽  
Vol 17 (3) ◽  
pp. 577-585 ◽  
Author(s):  
Md Yeasin Bhuiyan ◽  
Jingjing Bao ◽  
Banibrata Poddar ◽  
Victor Giurgiutiu

In this study, we focus on analyzing the acoustic emission waveforms of the fatigue crack growth despite the conventional statistics-based analysis of acoustic emission. The acoustic emission monitoring technique is a well-known approach in the non-destructive evaluation/structural health monitoring research field. The growth of the fatigue crack causes the acoustic emission in the material that propagates in the structure. The acoustic emission happens not only from the crack growth but also from the interaction of the crack tips during the fatigue loading in the structure. The acoustic emission waveforms are generated from the acoustic emission events; they propagate and create local vibration modes along the crack faces (crack resonance). In-situ fatigue and acoustic emission experiments were conducted to monitor the acoustic emission waveforms from the fatigue cracks. Several test specimens were used in the fatigue experiments, and corresponding acoustic emission waveforms were captured. The acoustic emission waveforms were analyzed and distinguished into three types based on the similar nature in both time and frequency domains. Three-dimensional harmonic finite element analyses were performed to identify the local vibration modes. The local crack resonance phenomenon has been observed from the finite element simulation that could potentially give the geometric information of the crack. The laser Doppler vibrometry experiment was performed to identify the crack resonance phenomenon, and the experimental results were used to verify the simulated results.


Author(s):  
Naserodin Sepehry ◽  
Firooz Bakhtiari-Nejad ◽  
Weidong Zhu

Impedance based structural health monitoring using piezoelectric material is a high frequency method for detection of tiny damage. For modeling of structure in high frequency using conventional finite element method very fine mesh is needed. For large structure, this leads to very large mass and stiffness matrices. So very high RAM is needed to save these matrices and simulation time would be very low. In this paper a method combined finite element method and boundary element method named scaled boundary finite element method is studied for health and cracked 2D structure. Impedance of healthy and cracked structure is compared and verified by finite element method. A good agreement is presented and very low degree of freedom is obtained compared with finite element method.


Sign in / Sign up

Export Citation Format

Share Document