scholarly journals Theoretical Studies of Acrolein Hydrogenation to Propenol and Propanal on Au3 and Au5

Author(s):  
Guo-Jun Kang ◽  
Shuai He ◽  
Xue-Feng Ren

The stepwise hydrogenation of the C=C bond and C=O group of acrolein on Au3 and Au5 model systems is investigated using the density functional theory(DFT) PW91 functional. Our results show that the C=C hydrogenation is more favorable than that of C=O bond on Au3 with the barriers of the rate-determining step being 0.35 and 0.62 eV respectively. On the other hand, the C=O reduction is preferred over the hydrogenation of the C=C bond on Au5. The corresponding barriers of the rate-determining steps are 0.45 and 0.54 eV, respectively. This demonstrated that the second hydrogenation step controls the reaction on both Au3 and Au5 for C=O and C=C hydrogenation and the C=O hydrogenation on Au5 is preferred over the hydrogenation of the C=C bond, which is helpful to address the reactivity of small size-selected supported gold clusters.

2021 ◽  
Vol 43 (1) ◽  
pp. 25-25
Author(s):  
Said Abdelqadar Said Said Abdelqadar Said ◽  
Omar A Shareef and Abdulkhalik S Alkazzaz Omar A Shareef and Abdulkhalik S Alkazzaz

The transformation of 2and#39;-hydroxychalcones to their corresponding flavanones was studied theoretically by the use of the density functional theory (DFT) with B3-LYP/ 6-311G basis set to get important information about the role of both of electronic and structural properties in this process. The obtained energies were found to be in agreement with our previous results that obtained from HPLC studies. The estimated hardness, polarizability, and electrophilicity profiles were found to obey the maximum hardness principle (MHP), minimum polarizability principle (MPP), and the minimum electrophilicity principle (MEP) respectively. Flavanone ring closure was found to be the rate-determining step.


2010 ◽  
Vol 09 (supp01) ◽  
pp. 65-75 ◽  
Author(s):  
JING LI ◽  
WAN-YI JIANG

The trimethylamine-catalyzed Baylis–Hillman reaction of formaldehyde and vinylaldehyde has been studied with the density functional theory (DFT) method of B3LYP/6-31+G(d,p). In the gas phase, the reaction involves an amine–formaldehyde–vinylaldehyde trimolecular addition transition structure followed by rate-determining intramolecular 1,3-hydrogen shift. When a bulk solvent effect of water was considered with conductor-like polarizable continuum model (CPCM), the reaction was found to follow the sequence of Michael-addition of amine to vinylaldehyde (step 1), addition of formaldehyde (step 2), and 1,3-hydrogen shift (step 3), with the 1,3-hydrogen shift as rate-determining. The overall reaction barrier is significantly reduced. When a molecule of water is involved in the reaction, the 1,3-hydrogen shift is significantly promoted so that the rate-determining step becomes the C–C bond formation. The calculated overall reaction barrier is in agreement with experimental observations.


2021 ◽  
Vol 43 (1) ◽  
pp. 25-25
Author(s):  
Said Abdelqadar Said Said Abdelqadar Said ◽  
Omar A Shareef and Abdulkhalik S Alkazzaz Omar A Shareef and Abdulkhalik S Alkazzaz

The transformation of 2and#39;-hydroxychalcones to their corresponding flavanones was studied theoretically by the use of the density functional theory (DFT) with B3-LYP/ 6-311G basis set to get important information about the role of both of electronic and structural properties in this process. The obtained energies were found to be in agreement with our previous results that obtained from HPLC studies. The estimated hardness, polarizability, and electrophilicity profiles were found to obey the maximum hardness principle (MHP), minimum polarizability principle (MPP), and the minimum electrophilicity principle (MEP) respectively. Flavanone ring closure was found to be the rate-determining step.


2021 ◽  
Vol 43 (1) ◽  
pp. 25-25
Author(s):  
Said Abdelqadar Said Said Abdelqadar Said ◽  
Omar A Shareef and Abdulkhalik S Alkazzaz Omar A Shareef and Abdulkhalik S Alkazzaz

The transformation of 2'-hydroxychalcones to their corresponding flavanones was studied theoretically by the use of the density functional theory (DFT) with B3-LYP/ 6-311G basis set to get important information about the role of both of electronic and structural properties in this process. The obtained energies were found to be in agreement with our previous results that obtained from HPLC studies. The estimated hardness, polarizability, and electrophilicity profiles were found to obey the maximum hardness principle (MHP), minimum polarizability principle (MPP), and the minimum electrophilicity principle (MEP) respectively. Flavanone ring closure was found to be the rate-determining step.


2021 ◽  
Vol 43 (1) ◽  
pp. 25-25
Author(s):  
Said Abdelqadar Said Said Abdelqadar Said ◽  
Omar A Shareef and Abdulkhalik S Alkazzaz Omar A Shareef and Abdulkhalik S Alkazzaz

The transformation of 2and#39;-hydroxychalcones to their corresponding flavanones was studied theoretically by the use of the density functional theory (DFT) with B3-LYP/ 6-311G basis set to get important information about the role of both of electronic and structural properties in this process. The obtained energies were found to be in agreement with our previous results that obtained from HPLC studies. The estimated hardness, polarizability, and electrophilicity profiles were found to obey the maximum hardness principle (MHP), minimum polarizability principle (MPP), and the minimum electrophilicity principle (MEP) respectively. Flavanone ring closure was found to be the rate-determining step.


2008 ◽  
Vol 5 (1) ◽  
pp. 136-143
Author(s):  
P. K. Mohamed Imran ◽  
K. Subramani

Hyperconjugation is an act to build π bond character into bonds that have only σ character. Negative Hyperconjugation is the flow or movements of electrons from π to σ* orbitals and more particularly from π orbital of a carbon atom to the σ* orbital of the C—X bond, where X is any electronegative atom. This effect is different from Inductive effects. An attempt is made to study the negative hyperconjugation (Anomeric Effect) by the calculation of the charges at the Density Functional Theory (DFT) level for some compounds with hypervalent atoms like Si, P & S


2019 ◽  
Vol 44 (3) ◽  
pp. 222-233 ◽  
Author(s):  
Jiaying Zhang

The density functional theory method is employed to systematically explore the mechanism of syngas methanation on the Ni4/MCM-41 catalyst surface. The calculation results show that the optimal pathway of CH4 formation is CO + H → CHO + H → CH2O + H → CH3O → CH3 + H → CH4 with the rate-determining step of CH3O direct dissociation. Because the activation energy for the direct dissociation of CH3O species is much lower than that for the CH3OH formation (198.6 vs 264.8 kJ mol−1), there is almost no by-product CH3OH that appeared in the products of the syngas methanation over the Ni4/MCM-41 catalyst. Compared with other conventional nickel-based methanation catalysts, Ni4/MCM-41 catalyst is an excellent methanation catalyst with high selectivity of CH4.


2020 ◽  
Vol 10 (1) ◽  
pp. 240-251 ◽  
Author(s):  
Lin Zhou ◽  
Li Yang ◽  
Songshan Dai ◽  
Yuanyuan Gao ◽  
Ran Fang ◽  
...  

The mechanism and chemoselectivity in the cycloaddition of ynamides and isoxazoles have been explored by the density functional theory (DFT) in model systems composed of a Brønsted acid (HNTf2), gold(i) [IPrAuNTf2] or platinum(ii) (PtCl2/CO) catalyst.


2003 ◽  
Vol 02 (02) ◽  
pp. 171-177 ◽  
Author(s):  
Roberto Salcedo ◽  
Norma Mireles ◽  
Luis Enrique Sansores

Inductive effect in the aromatic moieties of [2,2]paracyclophane is theoretically analyzed with the density functional theory. The inclusion of different substituents in one of the moieties seems to affect the behaviour of the other. The nature of activating or deactivating groups as substituents reflect known facts on electrophilic aromatic substitutions derived from the inductive effects. The interesting feature in this case is that the phenomenon is transfered from the substituted deck to the other via transannular effects. The strain suffered by the cyclophane molecule is also analyzed.


Sign in / Sign up

Export Citation Format

Share Document