scholarly journals Higher Order Wave Equation with Logarithmic Source Term

Author(s):  
Sh. Hajrulla ◽  
L. Bezati ◽  
F. Hoxha

In this paper we study the initial boundary value problem for logarithmic Higher Order Wave equation. Introducing the Logarithmic Sobolev inequality and using the combination of Galerkin method, we consider the theorem of existence of a global weak solution to problem for the initial boundary value problem of the logarithmic wave equation. By constructing an appropriate Lyapunov function, we obtain the decay estimates of energy for logarithmic Higher Order Wave equation. The proof of the main theorem is given.

Author(s):  
Shkelqim Hajrulla ◽  
Leonard Bezati ◽  
Fatmir Hoxha

We introduce a class of logarithmic wave equation. We study the global existence of week solution for this class of equation. We deal with the initial boundary value problem of this class. Using the Galerkin method and the Gross logarithmic Sobolev inequality we establish the main theorem of existence of week solution for this class of equation arising from Q-Ball Dynamic in particular.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Liming Xiao ◽  
Mingkun Li

AbstractIn this paper, we study the initial boundary value problem for a class of higher-order n-dimensional nonlinear pseudo-parabolic equations which do not have positive energy and come from the soil mechanics, the heat conduction, and the nonlinear optics. By the mountain pass theorem we first prove the existence of nonzero weak solution to the static problem, which is the important basis of evolution problem, then based on the method of potential well we prove the existence of global weak solution to the evolution problem.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Fosheng Wang ◽  
Chengqiang Wang

We are concerned in this paper with the initial boundary value problem for a quasilinear viscoelastic wave equation which is subject to a nonlinear action, to a nonlinear frictional damping, and to a Kelvin-Voigt damping, simultaneously. By utilizing a carefully chosen Lyapunov functional, we establish first by the celebrated convexity argument a finite time blow-up criterion for the initial boundary value problem in question; we prove second by an a priori estimate argument that some solutions to the problem exists globally if the nonlinearity is “weaker,” in a certain sense, than the frictional damping, and if the viscoelastic damping is sufficiently strong.


Sign in / Sign up

Export Citation Format

Share Document