Mechanical Forces before Chemical Energy at the Origins of Life?

Author(s):  
Helen Greenwood Hansma
Sci ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 2 ◽  
Author(s):  
Hansma

Mechanical forces and mechanical energy are prevalent in living cells. This may be because mechanical forces and mechanical energy preceded chemical energy at life’s origins. Mechanical energy is more readily available in non-living systems than the various forms of chemical energy used by living systems. Two possible prebiotic environments that might have provided mechanical energy are hot pools that experience wet/dry cycles and mica sheets as they move, open and shut, as heat pumps or in response to water movements.


Sci ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 88
Author(s):  
Helen Greenwood Hansma

Mechanical forces and mechanical energy are prevalent in living cells. This may be because mechanical forces and mechanical energy preceded chemical energy at life’s origins. Mechanical energy is more readily available in nonliving systems than the various forms of chemical energy used by living systems. Two possible prebiotic environments that might have provided mechanical energy are hot pools that experience wet/dry cycles and mica sheets as they move, open and shut, as heat pumps or in response to water movements.


Sci ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 19
Author(s):  
Helen Greenwood Hansma

Mechanical forces and mechanical energy are prevalent in living cells. This may be because mechanical forces and mechanical energy preceded chemical energy at life’s origins. Mechanical energy is more readily available in non-living systems than the various forms of chemical energy used by living systems. Two possible prebiotic environments that might have provided mechanical energy are hot pools that experience wet/dry cycles and mica sheets as they move, open and shut, as heat pumps or in response to water movements.


Sci ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 50
Author(s):  
Helen Greenwood Hansma

Forces and mechanical energy are prevalent in living cells. This may be because forces and mechanical energy preceded chemical energy at life’s origins. Mechanical energy is more readily available in non-living systems than the various other forms of energy used by living systems. Two possible prebiotic environments that might have provided mechanical energy are hot pools that experience wet/dry cycles and mica sheets as they move, open and shut, as heat pumps or in response to water movements.


2020 ◽  
Vol 56 (88) ◽  
pp. 13611-13614
Author(s):  
Jialu Wang ◽  
Xian Zhang ◽  
Guozhong Wang ◽  
Yunxia Zhang ◽  
Haimin Zhang

A new type of direct 5-hydroxymethylfurfural (HMF) oxidation fuel cell based on a bifunctional PtNiSx/CB catalyst not only transformed chemical energy into electric energy but also converted HMF into value-added 2,5-furandicarboxylic (FDCA).


1989 ◽  
Vol 14 (2) ◽  
pp. 103-131 ◽  
Author(s):  
J. Mayo Greenberg ◽  
Nansheng Zhao ◽  
Joniek Hage

2020 ◽  
Author(s):  
Michele Larocca

<p>Protein folding is strictly related to the determination of the backbone dihedral angles and depends on the information contained in the amino acid sequence as well as on the hydrophobic effect. To date, the type of information embedded in the amino acid sequence has not yet been revealed. The present study deals with these problematics and aims to furnish a possible explanation of the information contained in the amino acid sequence, showing and reporting rules to calculate the backbone dihedral angles φ. The study is based on the development of mechanical forces once specific chemical interactions are established among the side chain of the residues in a polypeptide chain. It aims to furnish a theoretical approach to predict backbone dihedral angles which, in the future, may be applied to computational developments focused on the prediction of polypeptide structures.</p>


Sign in / Sign up

Export Citation Format

Share Document