origins of life
Recently Published Documents


TOTAL DOCUMENTS

527
(FIVE YEARS 92)

H-INDEX

29
(FIVE YEARS 6)

2022 ◽  
Vol 8 (2) ◽  
Author(s):  
Yana Bromberg ◽  
Ariel A. Aptekmann ◽  
Yannick Mahlich ◽  
Linda Cook ◽  
Stefan Senn ◽  
...  

Computational exploration of similarities among metal-binding protein structural motifs elucidates the origins of life.


Author(s):  
Helen Greenwood Hansma

Intracellular potassium concentrations, [K+], are high in all types of living cells, but the origins of this K+ are unknown. The simplest hypothesis is that life emerged in an environment that was high in K+. One such environment is the spaces between the sheets of the clay mineral, mica. The best mica for life’s origins is the black mica, biotite, because it has a high content of Mg++ and it has iron in various oxidation states. Life also has many of the characteristics of the environment between mica sheets, giving further support for the possibility that mica was the substrate on and within which life emerged.


2022 ◽  
Author(s):  
Yao Lu ◽  
Giulia Allegri ◽  
Jurriaan Huskens

The construction of artificial cells with specific cell-mimicking functions helps to explore complex biological processes and cell functions in natural cell systems, and provides insight into the origins of life....


2022 ◽  
Vol 32 (1) ◽  
pp. R44-R46
Author(s):  
Lorenzo Sebastianelli ◽  
Sheref S. Mansy

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1419
Author(s):  
Caleb Deen Bastian ◽  
Hershel Rabitz

Can a replicase be found in the vast sequence space by random drift? We partially answer this question through a proof-of-concept study of the times of occurrence (hitting times) of some critical events in the origins of life for low-dimensional RNA sequences using a mathematical model and stochastic simulation studies from Python software. We parameterize fitness and similarity landscapes for polymerases and study a replicating population of sequences (randomly) participating in template-directed polymerization. Under the ansatz of localization where sequence proximity correlates with spatial proximity of sequences, we find that, for a replicating population of sequences, the hitting and establishment of a high-fidelity replicator depends critically on the polymerase fitness and sequence (spatial) similarity landscapes and on sequence dimension. Probability of hitting is dominated by landscape curvature, whereas hitting time is dominated by sequence dimension. Surface chemistries, compartmentalization, and decay increase hitting times. Compartmentalization by vesicles reveals a trade-off between vesicle formation rate and replicative mass, suggesting that compartmentalization is necessary to ensure sufficient concentration of precursors. Metabolism is thought to be necessary to replication by supplying precursors of nucleobase synthesis. We suggest that the dynamics of the search for a high-fidelity replicase evolved mostly during the final period and, upon hitting, would have been followed by genomic adaptation of genes and to compartmentalization and metabolism, effecting degree-of-freedom gains of replication channel control over domain and state to ensure the fidelity and safe operations of the primordial genetic communication system of life.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1221
Author(s):  
Lena Vincent ◽  
Stephanie Colón-Santos ◽  
H. James Cleaves ◽  
David A. Baum ◽  
Sarah E. Maurer

“Prebiotic soup” often features in discussions of origins of life research, both as a theoretical concept when discussing abiological pathways to modern biochemical building blocks and, more recently, as a feedstock in prebiotic chemistry experiments focused on discovering emergent, systems-level processes such as polymerization, encapsulation, and evolution. However, until now, little systematic analysis has gone into the design of well-justified prebiotic mixtures, which are needed to facilitate experimental replicability and comparison among researchers. This paper explores principles that should be considered in choosing chemical mixtures for prebiotic chemistry experiments by reviewing the natural environmental conditions that might have created such mixtures and then suggests reasonable guidelines for designing recipes. We discuss both “assembled” mixtures, which are made by mixing reagent grade chemicals, and “synthesized” mixtures, which are generated directly from diversity-generating primary prebiotic syntheses. We discuss different practical concerns including how to navigate the tremendous uncertainty in the chemistry of the early Earth and how to balance the desire for using prebiotically realistic mixtures with experimental tractability and replicability. Examples of two assembled mixtures, one based on materials likely delivered by carbonaceous meteorites and one based on spark discharge synthesis, are presented to illustrate these challenges. We explore alternative procedures for making synthesized mixtures using recursive chemical reaction systems whose outputs attempt to mimic atmospheric and geochemical synthesis. Other experimental conditions such as pH and ionic strength are also considered. We argue that developing a handful of standardized prebiotic recipes may facilitate coordination among researchers and enable the identification of the most promising mechanisms by which complex prebiotic mixtures were “tamed” during the origin of life to give rise to key living processes such as self-propagation, information processing, and adaptive evolution. We end by advocating for the development of a public prebiotic chemistry database containing experimental methods (including soup recipes), results, and analytical pipelines for analyzing complex prebiotic mixtures.


Author(s):  
Madhan R. Tirumalai ◽  
Mario Rivas ◽  
Quyen Tran ◽  
George E. Fox

In his 2001 article, “Translation: in retrospect and prospect,” the late Carl Woese made a prescient observation that “our current view of translation be reformulated to become an all-embracing perspective about which 21st century Biology can develop” (RNA 7:1055–1067, 2001, https://doi:10.1017/s1355838201010615 ). The quest to decipher the origins of life and the road to the genetic code are both inextricably linked with the history of the ribosome. After over 60 years of research, significant progress in our understanding of how ribosomes work has been made.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Louis M. P. Ter-Ovanessian ◽  
Baptiste Rigaud ◽  
Alberto Mezzetti ◽  
Jean-François Lambert ◽  
Marie-Christine Maurel

AbstractThe first step of pyrimidine synthesis along the orotate pathway is studied to test the hypothesis of geochemical continuity of protometabolic pathways at the origins of life. Carbamoyl phosphate (CP) is the first high-energy building block that intervenes in the in vivo synthesis of the uracil ring of UMP. Thus, the likelihood of its occurrence in prebiotic conditions is investigated herein. The evolution of carbamoyl phosphate in water and in ammonia aqueous solutions without enzymes was characterised using ATR-IR, 31P and 13C spectroscopies. Carbamoyl phosphate initially appears stable in water at ambient conditions before transforming to cyanate and carbamate/hydrogenocarbonate species within a matter of hours. Cyanate, less labile than CP, remains a potential carbamoylating agent. In the presence of ammonia, CP decomposition occurs more rapidly and generates urea. We conclude that CP is not a likely prebiotic reagent by itself. Alternatively, cyanate and urea may be more promising substitutes for CP, because they are both “energy-rich” (high free enthalpy molecules in aqueous solutions) and kinetically inert regarding hydrolysis. Energy-rich inorganic molecules such as trimetaphosphate or phosphoramidates were also explored for their suitability as sources of carbamoyl phosphate. Although these species did not generate CP or other carbamoylating agents, they exhibited energy transduction, specifically the formation of high-energy P–N bonds. Future efforts should aim to evaluate the role of carbamoylating agents in aspartate carbamoylation, which is the following reaction in the orotate pathway.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Muneyuki Matsuo ◽  
Kensuke Kurihara

AbstractThe hypothesis that prebiotic molecules were transformed into polymers that evolved into proliferating molecular assemblages and eventually a primitive cell was first proposed about 100 years ago. To the best of our knowledge, however, no model of a proliferating prebiotic system has yet been realised because different conditions are required for polymer generation and self-assembly. In this study, we identify conditions suitable for concurrent peptide generation and self-assembly, and we show how a proliferating peptide-based droplet could be created by using synthesised amino acid thioesters as prebiotic monomers. Oligopeptides generated from the monomers spontaneously formed droplets through liquid–liquid phase separation in water. The droplets underwent a steady growth–division cycle by periodic addition of monomers through autocatalytic self-reproduction. Heterogeneous enrichment of RNA and lipids within droplets enabled RNA to protect the droplet from dissolution by lipids. These results provide experimental constructs for origins-of-life research and open up directions in the development of peptide-based materials.


Sign in / Sign up

Export Citation Format

Share Document