scholarly journals Anatomy, Age and Origin of an Intramontane Top Basin Surface (Sorbas Basin, Betic Cordillera, SE Spain)

Author(s):  
Martin Stokes ◽  
Anne E. Mather ◽  
Ángel Rodés ◽  
Samantha H. Kearsey ◽  
Shaun Lewin

Collisional mountain belts commonly develop intramontane basins from mechanical and isostatic subsidence during orogenic development. These frequently display a relict top surface, evidencing a change interval from basin infilling to erosion often via capture or overspill. Such surfaces provide markers that inform on orogenic growth patterns via climate and base level interplay. Here, we describe the top surface from the Sorbas Basin, a key intramontane basin within the Betic Cordillera (SE Spain). The surface is fragmentary comprising high elevation hilltops and discontinuous ridges developed onto the variably deformed final basin infill outcrop (Gochar Formation). We reconstruct surface configuration using DEM interpolation and apply 10Be/26Al cosmonuclides to assess surface formation timing. The surface is a degraded Early Pleistocene erosional pediment developed via autogenic switching of alluvial fan streams under stable dryland climate and base level conditions. Base level lowering since the Middle Pleistocene focused headwards incision up interfan drainages, culminating in fan head capture and fan morphological preservation within the abandoned surface. Post abandonment erosion has lowered the basin surface by 31 m (average) and removed ~5.95 km3 of fill. Regional basin comparisons reveal a phase of Early Pleistocene surface formation, marking landscape stability following the most recent Pliocene-Early Pleistocene mountain building. Post-surface erosion rate quantification is low and in accordance with 10Be denudation rates typical of the low uplift Betic Cordillera.

Author(s):  
Martin Stokes ◽  
Anne E. Mather ◽  
Ángel Rodés ◽  
Samantha H. Kearsey ◽  
Shaun Lewin

Collisional mountain belts commonly develop intramontane basins from mechanical and isostatic subsidence during orogenic These frequently display a relict top surface, evidencing a change  interval from basin infilling  to erosion often via  capture  or overspill.  Such surfaces provide  markers  that  inform  on orogenic  growth patterns  via  climate  and  base level Here, we describe the top surface from the Sorbas Basin, a key intramontane basin within the Betic Cordillera (SE Spain). The surface is fragmentary comprising high elevation hilltops and discontinuous ridges developed onto the variably deformed final basin infill outcrop (Gochar Formation). We reconstruct surface configuration using DEM interpolation and apply 10Be/26Al cosmonuclides to assess surface formation The surface is an Early Pleistocene erosional pediment developed via autogenic switching of alluvial fan streams under stable dryland climate and base level Base level lowering since the Middle Pleistocene focused headwards incision up interfan drainages, culminating in fan head capture and fan morphological preservation within the abandoned Post abandonment erosion has lowered the basin surface by 31 m (average) and removed ~5.95 km3 of fill. Regional basin comparisons reveal a phase of Early Pleistocene surface formation, marking landscape stability following the most recent Pliocene-Early Pleistocene mountain Post-surface erosion rate quantification is low and in accordance with 10Be denudation rates typical of the low uplift Betic


Quaternary ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 15 ◽  
Author(s):  
Martin Stokes ◽  
Anne Mather ◽  
Angel Rodes ◽  
Samantha Kearsey ◽  
Shaun Lewin

Collisional mountain belts commonly develop intramontane basins from mechanical and isostatic subsidence during orogenic development. These frequently display a relict top surface, evidencing a change interval from basin infilling to erosion often via capture or overspill. Such surfaces provide markers that inform on orogenic growth patterns via climate and base level interplay. Here, we describe the top surface from the Sorbas Basin, a key intramontane basin within the Betic Cordillera (SE Spain). The surface is fragmentary comprising high elevation hilltops and discontinuous ridges developed onto the variably deformed final basin infill outcrop (Gochar Formation). We reconstruct surface configuration using DEM interpolation and apply 10Be/26Al cosmonuclides to assess surface formation timing. The surface is a degraded Early Pleistocene erosional pediment developed via autogenic switching of alluvial fan streams under stable dryland climate and base level conditions. Base-level lowering since the Middle Pleistocene focused headwards incision up interfan drainages, culminating in fan head capture and fan morphological preservation within the abandoned surface. Post abandonment erosion has lowered the basin surface by 31 m (average) and removed ~5.95 km3 of fill. Regional basin comparisons reveal a phase of Early Pleistocene surface formation, marking landscape stability following the most recent Pliocene-Early Pleistocene mountain building. Post-surface erosion rate quantification is low and in accordance with 10Be denudation rates typical of the low uplift Betic Cordillera.


2020 ◽  
Author(s):  
Gilles Rixhon ◽  
Didier L. Bourlès ◽  
Régis Braucher ◽  
Alexandre Peeters ◽  
Alain Demoulin

<p>Multi-level cave systems record the history of regional river incision in abandoned alluvium-filled phreatic passages which, mimicking fluvial terrace sequences, represent former phases of fluvial base-level stability. In this respect, cosmogenic burial dating of in cave-deposited alluvium (usually via the nuclide pair <sup>26</sup>Al/<sup>10</sup>Be) represents a suitable method to quantify the pace of long-term river incision. Here, we present a dataset of fifteen <sup>26</sup>Al/<sup>10</sup>Be burial ages measured in fluvial pebbles washed into a multi-level cave system developed in Devonian limestone of the uplifted Ardenne massif (eastern Belgium). The large and well-documented Chawresse system is located along the lower Ourthe valley (i.e. the main Ardennian tributary of the Meuse river) and spans altogether an elevation difference exceeding 120 m.</p><p>The depleted <sup>26</sup>Al/<sup>10</sup>Be ratios measured in four individual caves show two main outcomes. Firstly, computed burial ages ranging from ~0.2 to 3.3 Ma allows highlighting an acceleration by almost one order of magnitude of the incision rates during the first half of the Middle Pleistocene (from ~25 to ~160 m/Ma). Secondly, according to the relative elevation above the present-day floodplain of the sampled material in the Manants cave (<35 m), the four internally-consistent Early Pleistocene burial ages highlight an “anomalous” old speleogenesis in the framework of a gradual base-level lowering. They instead point to intra-karsting reworking of the sampled material in the topographically complex Manants cave. This in turn suggests an independent, long-lasting speleogenetic evolution of this specific cave, which differs from the <em>per descensum</em> model of speleogenesis generally acknowledged for the regional multi-level cave systems and their abandoned phreatic galleries. In addition to its classical use for inferring long-term incision rates, cosmogenic burial dating can thus contribute to better understand specific and complex speleogenetic evolution.</p>


2020 ◽  
Author(s):  
Daniel Ballesteros ◽  
Carole Nehme ◽  
Andrew Farrant ◽  
Dominique Todisco ◽  
Diana Sahy ◽  
...  

<p>In many lowland areas, fluvial incision is usually relatively slowly and another factors as the stratigraphical control would play a relevant role. In the lower Seine valley of Northern France, cave systems developed in the sub-horizontal Upper Cretaceous chalk of the Anglo-Paris Basin offer the potential to constrain the Quaternary evolution of the Seine valley and to test the role of speleo-inception theory of conduit development in the chalk aquifer. Six chalk caves, with a combined length of over 5.7 km were studied in detail. In each studied cave, data on the passage morphology, cave deposits (speleothem and sediments) and stratigraphical control were recorded. Cave levels were defined based on geomorphological evidence and altitudinal cave passage analyses. The chronology of cave development and abandonment was constrained by ten U-Th speleothem dates and 144 palaeomagnetic samples collected from laminated sediments within the caves. Four regional cave levels were identified at 10, 40, 75-80, and 85-90 m asl, showing 1% slope to the Seine estuary. Each cave level is formed by phreatic and epiphreatic conduits enlarged by paragenesis, showing branch work or maze patterns. Cave infill corresponds mainly to clayey to silty sediments that occupy the majority of the karst conduits. Locally, sands and pebbles occur, and speleothems are relatively scarce. Palaeomagnetic and U-Th data show that these cave levels developed sequentially from >1.06 ka to c. 300 ka, ca. 78% of them in relation to prominent Turonian, Coniacian and Santonian hardgrounds as well as sheet- and semi-tabular flint bands. Their age correlates with the estimated age of the lower river terraces from limited previously published OSL, palaeontological and U-Th dating, although new age data from the study cave improve the chronology of the higher-level river terraces. The combination of all this data suggests an initial slow rate of incision during the early Pleistocene, followed by a phase of more rapid river incision up to ~ 0.30 m·ka<sup>-1</sup> from ca. 1 to 0.7 Ma. Later, incision rates dropped to ~0.08 m·ka<sup>-1</sup> during Middle Pleistocene, and 0.05 m·ka<sup>-1</sup> since the beginning of the Upper Pleistocene. In conclusion, fluvial incision constitutes also a relevant speleogenic factor in low-gradient areas as the Seine Basin, where conduit development was favoured at sites where suitable lithological inception horizons intercept the contemporary base level.</p>


2014 ◽  
Vol 96 ◽  
pp. 204-221 ◽  
Author(s):  
José Manuel García-Aguilar ◽  
Antonio Guerra-Merchán ◽  
Francisco Serrano ◽  
Paul Palmqvist ◽  
Antonio Flores-Moya ◽  
...  

Geosciences ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 394
Author(s):  
Manuel Martín-Martín ◽  
Francesco Guerrera ◽  
Mario Tramontana

Four main unconformities (1–4) were recognized in the sedimentary record of the Cenozoic basins of the eastern External Betic Zone (SE, Spain). They are located at different stratigraphic levels, as follows: (1) Cretaceous-Paleogene boundary, even if this unconformity was also recorded at the early Paleocene (Murcia sector) and early Eocene (Alicante sector), (2) Eocene-Oligocene boundary, quite synchronous, in the whole considered area, (3) early Burdigalian, quite synchronous (recognized in the Murcia sector) and (4) Middle Tortonian (recognized in Murcia and Alicante sectors). These unconformities correspond to stratigraphic gaps of different temporal extensions and with different controls (tectonic or eustatic), which allowed recognizing minor sedimentary cycles in the Paleocene–Miocene time span. The Cenozoic marine sedimentation started over the oldest unconformity (i.e., the principal one), above the Mesozoic marine deposits. Paleocene-Eocene sedimentation shows numerous tectofacies (such as: turbidites, slumps, olistostromes, mega-olistostromes and pillow-beds) interpreted as related to an early, blind and deep-seated tectonic activity, acting in the more internal subdomains of the External Betic Zone as a result of the geodynamic processes related to the evolution of the westernmost branch of the Tethys. The second unconformity resulted from an Oligocene to Aquitanian sedimentary evolution in the Murcia Sector from marine realms to continental environments. This last time interval is characterized as the previous one by a gentle tectonic activity. On the other hand, the Miocene sedimentation was totally controlled by the development of superficial thrusts and/or strike-slip faults zones, both related to the regional geodynamic evolutionary framework linked to the Mediterranean opening. These strike-slip faults zones created subsidence areas (pull-apart basin-type) and affected the sedimentation lying above the third unconformity. By contrast, the subsidence areas were bounded by structural highs affected by thrusts and folds. After the third unconformity, the Burdigalian-Serravallian sedimentation occurred mainly in shallow- to deep-water marine environments (Tap Fm). During the Late Miocene, after the fourth unconformity, the activation of the strike-slip faults zones caused a shallow marine environment sedimentation in the Murcia sector and a continental (lacustrine and fluvial) deposition in the Alicante sector represented the latter, resulting in alluvial fan deposits. Furthermore, the location of these fans changed over time according to the activation of faults responsible for the tectonic rising of Triassic salt deposits, which fed the fan themselves.


2012 ◽  
Vol 38 (1) ◽  
Author(s):  
M.A. Rodríguez-Pascua ◽  
R. Pérez-López ◽  
V.H. Garduño-Monroy ◽  
J.L. Giner-Robles ◽  
P.G. Silva ◽  
...  

1989 ◽  
Vol 3 (1) ◽  
pp. 17-36 ◽  
Author(s):  
Encarnacion Puga ◽  
Antonio Diaz De Federico ◽  
Giuseppe Maria Bargossi ◽  
Lauro Morten
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document