scholarly journals Determining Oil Palm Stands Age Using Multi Temporal Images Analysis

Author(s):  
Anggoro Cahyo Fitrianto ◽  
Doddy Mendro Yuwono ◽  
Arif Darmawan ◽  
Koji Tokimatsu

In the oil palm industry, stands age is an important parameter to monitor the sustainability of cultivation, to develop the growth yield model, to identify the disease or stressed area, and to estimate the carbon storage capacity. This research is focused to estimate and distinguish oil palm stands age based on crown/ canopy density obtained using Forest Canopy Density (FCD) model derived from four indices as follows; Advanced Vegetation Index, Bare Soil Index, Shadow Index, and Thermal Index. FCD model employs multi temporal image analysis resulting four classes of oil palm stands age categorized as seed with FCD value of 29–56% (0 years), young with FCD value of 56–63% (1–9 years), teen with FCD value of 63–80% (10–15 years), and mature with FCD value of >80% (>15 years). Minimum canopy density value is 29% even in the zero years old indicates incomplete land clearance or the type of seed planted in the land.

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 817
Author(s):  
Mugurel Raul Sidău ◽  
Csaba Horváth ◽  
Maria Cheveresan ◽  
Ionuț Șandric ◽  
Florin Stoica

The interaction between precipitation and vegetation plays a significant role in the formation of runoff, and it is still a widely discussed issue in hydrology. The difficulty lies in estimating the degree to which a forest influences runoff generation, especially flood peaks, on the one hand, due to the small amount of information regarding the evolution of the forest area and density, and, on the other hand, the correlations between these indicators and the runoff and precipitation values. The analysis focuses on a small basin in the mountain region of Romania, the upper basin of the Ruscova River located in northwestern Romania. In this river basin, there is no significant anthropic influence, other than the intense deforestation and reforestation actions. Using satellite images captured by Landsat missions 5, 7 and 8 for the period 1985–2019, the forest canopy density vegetation index was extracted. Using a gridded precipitation dataset, a hydrological model was calibrated based on three scenarios to assess the impact of forest vegetation on the runoff. Analysis of the results of these models conducted on scenarios allowed us to deduce a simple equation for estimating the influence of forest area on maximum river flows. The analysis showed that even small differences in the forest surface area exert an influence on the peak flow, varying between −5.28% and 8.09%.


Author(s):  
M. Taefi Feijani ◽  
S. Azadnejad ◽  
S. Homayouni ◽  
M. Moradi

Abstract. Forest canopy density (FCD) of seventeen protected areas of the Caspian Hyrcanian mixed forest are studied here. A modified version of FCD mapper based on spectral band fusion and customized threshold calibration that is optimized for Hyrcanian forests is used for this purpose. In this project, the results of applying the FCD model on three time series of satellite images have been analysed. This classification is based on the FAO standard and consist of four categories such as no-forest, thin, semi-dense and dense. These images, taken with TM and ETM sensors, belong to three-time series between 1987 and 2002. The results of this study indicate that the rate of growth or destruction of forests has been investigated in the regions. Then, using tables and diagrams of variations, the rate of growth or destruction of forest lands in the corresponding period in each class is determined. The FCD model has the ability to study the canopy loading classes in the annual time series.


2019 ◽  
Vol 3 (2) ◽  
pp. 107
Author(s):  
Adam Irwansyah Fauzi ◽  
Agung Budi Harto ◽  
Dudung Muhally Hakim ◽  
Redho Surya Perdana

Salah satu faktor utama terjadinya perubahan iklim yang sedang berlangsung saat ini adalah akibat emisi yang ditimbulkan oleh degradasi hutan, yaitu mencapai sekitar 20% dari seluruh emisi Gas Rumah Kaca (GRK). Di Indonesia, degradasi hutan salah satunya banyak terjadi di kawasan perkotaan, tak terkecuali di Kota Bandar Lampung. Mengingat peran hutan yang begitu vital, banyak bidang-bidang keilmuan yang diaplikasikan untuk mengamati fenomena degradasi hutan, tak terkecuali teknologi penginderaan jauh (inderaja). Salah satu metode pengolahan citra yang sering diaplikasikan untuk mengamati hutan adalah model Forest Canopy Density (FCD). FCD merupakan suatu model yang dikembangkan oleh Atsushi Rikimaru untuk keperluan analisis dan pemantauan perkembangan hutan secara kuantitatif. Dari hasil pengolahan data dan analisis, antara rentang tahun 2009 hingga tahun 2015, Kota Bandar Lampung mengalami degradasi hutan sebesar 1002,75 ha. Meskipun demikian, secara keseluruhan degradasi terjadi pada kawasan budidaya yaitu mencapai 92,03%, sedangkan kawasan lindung hanya terdegradasi sebesar 7,97%. Selain itu, terdapat beberapa wilayah teridentifikasi mengalami peningkatan persentase penutup hutan, diantaranya terdapat pada kawasan hutan, permukiman dan pesisir pantai.


Author(s):  
Faisal Ashaari ◽  
Muhammad Kamal ◽  
Dede Dirgahayu

Identification of a tree canopy density information may use remote sensing data such as Landsat-8 imagery. Remote sensing technology such as digital image processing methods could be used to estimate the tree canopy density. The purpose of this research was to compare the results of accuracy of each method for estimating the tree canopy density and determine the best method for mapping the tree canopy density at the site of research. The methods used in the estimation of the tree canopy density are Single band (green, red, and near-infrared band), vegetation indices (NDVI, SAVI, and MSARVI), and Forest Canopy Density (FCD) model. The test results showed that the accuracy of each method: green 73.66%, red 75.63%, near-infrared 75.26%, NDVI 79.42%, SAVI 82.01%, MSARVI 82.65%, and FCD model 81.27%. Comparison of the accuracy results from the seventh methods indicated that MSARVI is the best method to estimate tree canopy density based on Landsat-8 at the site of research. Estimation tree canopy density with MSARVI method showed that the canopy density at the site of research predominantly 60-70% which spread evenly.


Sign in / Sign up

Export Citation Format

Share Document