scholarly journals Application of Long Short Term Memory Networks for Long- and Short-term Bus Travel Time Prediction

Author(s):  
Osama Osman ◽  
Hesham Rakha ◽  
Archak Mittal

This study introduces a comparative analysis of two deep learning (multilayer perceptron neural networks (MLP-NN) and the long short term memory networks (LSTMN)) models for transit travel time prediction. The two models were trained and tested using one-year worth of data for a bus route in Blacksburg, Virginia. In this study, the travel time was predicted between each two successive stations to all the model to be extended to include bus dwell times. Additionally, two additional models were developed for each category (MLP of LSTM): one for only segments including controlled intersections (controlled segments) and another for segments with no control devices along them (uncontrolled segments). The results show that the LSTM models outperform the MLP models with a RMSE of 17.69 sec compared to 18.81 sec. When splitting the data into controlled and uncontrolled segments, the RMSE values reduced to 17.33 sec for the controlled segments and 4.28 sec for the uncontrolled segments when applying the LSTM model. Whereas, the RMSE values were 19.39 sec for the controlled segments and 4.67 sec for the uncontrolled segments when applying the MLP model. These results demonstrate that the uncertainty in traffic conditions introduced by traffic control devices has a significant impact on travel time predictions. Nonetheless, the results demonstrate that the LSTMN is a promising tool that can has the ability to account for the temporal correlation within the data. The developed models are also promising tools for reasonable travel time predictions in transit applications.

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3354 ◽  
Author(s):  
Jianqing Wu ◽  
Qiang Wu ◽  
Jun Shen ◽  
Chen Cai

Travel time prediction is critical for advanced traveler information systems (ATISs), which provides valuable information for enhancing the efficiency and effectiveness of the urban transportation systems. However, in the area of bus trips, existing studies have focused on directly using the structured data to predict travel time for a single bus trip. For state-of-the-art public transportation information systems, a bus journey generally has multiple bus trips. Additionally, due to the lack of study on data fusion, it is even inadequate for the development of underlying intelligent transportation systems. In this paper, we propose a novel framework for a hybrid data-driven travel time prediction model for bus journeys based on open data. We explore a convolutional long short-term memory (ConvLSTM) model with a self-attention mechanism that accurately predicts the running time of each segment of the trips and the waiting time at each station. The model is more robust to capture long-range dependence in time series data as well.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 861 ◽  
Author(s):  
Xiangdong Ran ◽  
Zhiguang Shan ◽  
Yufei Fang ◽  
Chuang Lin

Traffic prediction is based on modeling the complex non-linear spatiotemporal traffic dynamics in road network. In recent years, Long Short-Term Memory has been applied to traffic prediction, achieving better performance. The existing Long Short-Term Memory methods for traffic prediction have two drawbacks: they do not use the departure time through the links for traffic prediction, and the way of modeling long-term dependence in time series is not direct in terms of traffic prediction. Attention mechanism is implemented by constructing a neural network according to its task and has recently demonstrated success in a wide range of tasks. In this paper, we propose an Long Short-Term Memory-based method with attention mechanism for travel time prediction. We present the proposed model in a tree structure. The proposed model substitutes a tree structure with attention mechanism for the unfold way of standard Long Short-Term Memory to construct the depth of Long Short-Term Memory and modeling long-term dependence. The attention mechanism is over the output layer of each Long Short-Term Memory unit. The departure time is used as the aspect of the attention mechanism and the attention mechanism integrates departure time into the proposed model. We use AdaGrad method for training the proposed model. Based on the datasets provided by Highways England, the experimental results show that the proposed model can achieve better accuracy than the Long Short-Term Memory and other baseline methods. The case study suggests that the departure time is effectively employed by using attention mechanism.


2020 ◽  
Author(s):  
Abdolreza Nazemi ◽  
Johannes Jakubik ◽  
Andreas Geyer-Schulz ◽  
Frank J. Fabozzi

Sign in / Sign up

Export Citation Format

Share Document