Thermal Fluctuations and Electromagnetic Noise Spectra in Quantum Statistical Mechanics
We derive the thermal noise spectrum of the Fourier transform of the electric field operator of a given wave vector starting from the quantum-statistical definitions and relate it to the complex frequency and wave vector dependent complex conductivity in a homogeneous, isotropic system of electromagnetic interacting electrons. We analyze separately the longitudinal and transverse case with their peculiarities. The Nyquist formula for vanishing frequency and wave vector, as well as its modification for non-vanishing frequencies and wave vectors follow immediately. Furthermore we discuss also the noise of the photon occupation numbers. It is important to stress that no additional assumptions at all were used in this straightforward proof.