scholarly journals A Static Hybrid Renewable Energy System for Off-Grid Supply

Author(s):  
Augusto Montisci ◽  
Marco Caredda

The electrification of rural areas of the planet has become one of the greatest challenges for sustainability. In fact, it would be the key to guaranteeing development for the poorest of the planet, but from which most of the raw material for the food market derives. The paradigm of centralized production is not applicable in these territories, because the distribution network would involve unjustifiable costs. For this reason, studies have multiplied to ensure the energy supply, especially electricity, of off-grid utilities, to guarantee energy autonomy while reducing the dependence on specialist assistance for the management of the system. In this work, a hybrid system (HRES) is proposed that combines the exploitation of solar energy with that of the wind through the use of static devices, in order to improve the system's availability and limit the cost of operation and maintenance.

2021 ◽  
Vol 13 (17) ◽  
pp. 9744
Author(s):  
Augusto Montisci ◽  
Marco Caredda

The electrification of the rural areas of the planet has become one of the greatest challenges for sustainability. In fact, it would be the key to guaranteeing development for the poorest areas of the planet from which most of the raw material for the food market derives. The paradigm of centralized production is not applicable in these territories, because the distribution network would involve unjustifiable costs. For this reason, many studies have been carried out to ensure that the energy supply (specifically electricity) for off-grid utilities is maintained, in order to guarantee energy autonomy while reducing dependence on specialist assistance for the management of the system. In this work, a hybrid system (HRES) is proposed that combines the exploitation of solar radiation, wind power, and biomass using static devices, in order to improve the system’s availability and limit the cost of operation and maintenance. The aim of the study is to define promising lines of research, which can improve the sustainability of renewable harvesting systems to supply off-grids users.


2015 ◽  
Vol 785 ◽  
pp. 546-550
Author(s):  
Ahmad Syazwan Aznan ◽  
Ismail Musirin ◽  
Siti Aliyah Mohd Saleh ◽  
Nur Azzammudin Rahmat

Recently, renewable energy has been in place to cater the depreciation of main energy. The presence of renewable energy sources can be made in hybrid to satisfy the demand in the distribution system. Nevertheless, the growth in number for renewable energy could lead to cost increment. This paper presents the optimization process of Hybrid Renewable Energy System (HRES) using Modified Evolutionary Strategy (ES) technique for cost minimization. The study involves the development of optimization engine for modified ES in order to solve the cost minimization of HRES. The improved version of ES is expected to address the computation burden experienced by the traditional ES technique. Results obtained from the implementation of the modified ES managed to reveal that its implementation is worth in terms of minimizing the cost


2021 ◽  
Vol 10 (4) ◽  
pp. 667-686
Author(s):  
Akinola Sunday Oladeji ◽  
Mudathir Funsho Akorede ◽  
Salihu Aliyu ◽  
Abdulrasaq Apalando Mohammed ◽  
Adebayo Wahab Salami

There is a need to develop an optimization tool that can be applied in the feasibility study of a hybrid renewable energy system to find the optimal capacity of different renewable energy resources and support the decision makers in their performance investigation. A multi-objective function which minimizes the Levelized Cost of Energy (LCOE) and Loss of Load Probability Index (LLPI) but maximizes the novel Energy Match Ratio (EMR) was formulated. Simulation-based optimization method combined with ε-constraint technique was developed to solve the multi-objective optimization problem. In the study, ten-year hourly electrical load demand, using the end-use model, is estimated for the communities. The performance of the developed algorithm was evaluated and validated using Hybrid Optimization Model for Electric Renewables (HOMER®) optimization software. The developed algorithm minimized the LCOE by 6.27% and LLPI by 167% when compared with the values of LCOE ($0.444/kWh) and LLPI (0.000880) obtained from the HOMER® optimization tool. Also, the LCOE with the proposed approach was calculated at $0.417/kWh, which is lower than the $0.444/kWh obtained from HOMER®. From environmental perspective, it is found that while 141,370.66 kg of CO2 is saved in the base year, 183,206.51 kg of CO2 is saved in the ninth year.The study concluded that the approach is computationally efficient and performed better than HOMER® for this particular problem.The proposed approach could be adopted for carrying out feasibility studies and design of HRES for Off-Grid electrification, especially in the rural areas where access to the grid electricity is limited


Author(s):  
Akinola Sunday Oladeji ◽  
Mudathir Funsho Akorede ◽  
Salihu Aliyu ◽  
Abdulrasaq Apalando Mohammed ◽  
Adebayo Wahab Salami

There is a need to develop an optimization tool that can be applied in the feasibility study of a hybrid renewable energy system to find the optimal capacity of different renewable energy resources and support the decision makers in their performance investigation. A multi-objective function which minimizes the Levelized Cost of Energy (LCOE) and Loss of Load Probability Index (LLPI) but maximizes the novel Energy Match Ratio (EMR) was formulated. Simulation-based optimization method combined with ε-constraint technique was developed to solve the multi-objective optimization problem. In the study, ten-year hourly electrical load demand, using the end-use model, is estimated for the communities. The performance of the developed algorithm was evaluated and validated using Hybrid Optimization Model for Electric Renewables (HOMER®) optimization software. The developed algorithm minimized the LCOE by 6.27% and LLPI by 167% when compared with the values of LCOE ($0.444/kWh) and LLPI (0.000880) obtained from the HOMER® optimization tool. Also, the LCOE with the proposed approach was calculated at $0.417/kWh, which is lower than the $0.444/kWh obtained from HOMER®. From environmental perspective, it is found that while 141,370.66 kg of CO2 is saved in the base year, 183,206.51 kg of CO2 is saved in the ninth year.The study concluded that the approach is computationally efficient and performed better than HOMER® for this particular problem.The proposed approach could be adopted for carrying out feasibility studies and design of HRES for Off-Grid electrification, especially in the rural areas where access to the grid electricity is limited


2020 ◽  
Vol 10 (12) ◽  
pp. 4061 ◽  
Author(s):  
Naoto Takatsu ◽  
Hooman Farzaneh

After the Great East Japan Earthquake, energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim, this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES), in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture, Japan. The techno-economic assessment of deploying the proposed systems was conducted, using an integrated simulation-optimization modeling framework, considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid, considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results, the proposed HRES can generate about 47.3 MWh of electricity in all scenarios, which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh, respectively.


Sign in / Sign up

Export Citation Format

Share Document