scholarly journals Violation of the Relativistic Energy Conservation Law and Einstein’s Principle of Relativity Caused by the Generation of Mechanical Transverse Waves in a Moving Medium

Author(s):  
Kenji Kawashima

We study the effect of the generation of the mechanical transverse wave (MTW) travelling in the opposite direction (OD) to a moving medium (MM) on the relativistic energy conservation law (RECL). From the viewpoint of the relativity of simultaneity (RS), the time on the coordinate coinciding with the advance end of the wave (AEW) travelling toward the rear of the MM passes faster than that on the coordinate coinciding with the wave source (WS). Then the AEW in the MM travels forward compared to that in the rest frame of reference (RFR) which is stationary relative to the medium when the time on the coordinate coinciding with the WS is same for each inertial frame of reference (IFR). Hence, the coordinate interval (CI) between the AEW and WS in the MM is observed to be larger than that between them in the RFR. We show that this difference holds true for the CI of any portion having transverse velocities mutually converted by the Lorentz transformation (LT). This difference in the CI leads to that in the rest mass (RM). We demonstrate that the RM included in wave motion (WM) in the MM is larger than one included in WM in the RFR when comparing the portions having transverse velocities mutually converted by the LT. This relation holds true for all portions in WM. Therefore, the total coordinate interval of the portion (CIP) and total RM (TRM) included in WM in the MM (WMMM) are large compared to them included in WM in the RFR. Furthermore, we compare the relativistic kinetic energy (RKE) of the MTW travelling in the OD to the MM (ODMM) with that of the MTW propagating in the direction vertical to the moving direction of the medium. We prove that the CIP and RM included in the former MTW are larger than them included in the latter MTW when comparing each portion with the same transverse velocity (TV). Moreover, the total CIP and TRM included in the former MTW are also large compared to them included in the latter MTW. The reason for these is that the latter CIP and RM are equal to them in the RFR when comparing the portions having transverse velocities mutually converted by the LT. On the other hand, the energy supplied to generate each MTW is the same. From these, we demonstrate that the RKE of the MTW travelling in the ODMM can be larger than the total relativistic energy (TRE) of the MTW propagating in the direction vertical to the moving direction of the medium. Consequently, we propose a violation of the RECL and Einstein’s principle of relativity (EPR) because the TRE is not necessarily conserved in the IFR in which the medium is moving.

1994 ◽  
Vol 50 (3) ◽  
pp. 293-297 ◽  
Author(s):  
Petro P Sosenko ◽  
Viktor K Decyk

2014 ◽  
Vol 989-994 ◽  
pp. 2340-2343
Author(s):  
Li Xing Li

With the growth of the total mileage of highway. There is great importance in studying highway safety. At the present time, there are little research on traffic safety with the consideration of the Keep-Right-Except-To-Pass Rule, which requires drivers to drive in the right-most lane unless they are passing another vehicle. Based on Cellular Automata, this paper constructs a new model of highway safety with the consideration of the particular Rule. To evaluate the safety of the road, the model proposes a new index based on energy conservation law. After the simulation, the result shows the best traffic density to balance the safety and traffic flux is 20.1133veh/km.


2017 ◽  
Vol 24 (6) ◽  
pp. 062112 ◽  
Author(s):  
Jianyuan Xiao ◽  
Hong Qin ◽  
Jian Liu ◽  
Ruili Zhang

2002 ◽  
Vol 92 (4) ◽  
pp. 555-559 ◽  
Author(s):  
Yu. V. Troitskiĭ

2012 ◽  
Vol 27 (33) ◽  
pp. 1250196 ◽  
Author(s):  
YUNJIE HUO ◽  
TIANJUN LI ◽  
YI LIAO ◽  
DIMITRI V. NANOPOULOS ◽  
YONGHUI QI ◽  
...  

We study two superluminal neutrino scenarios where [Formula: see text] is a constant. To be consistent with the OPERA, Borexino and ICARUS experiments and with the SN1987a observations, we assume that δvν on the Earth is about three-order larger than that on the interstellar scale. To explain the theoretical challenges from the Bremsstrahlung effects and pion decays, we consider the deformed Lorentz invariance, and show that the superluminal neutrino dispersion relations can be realized properly while the modifications to the dispersion relations of the other Standard Model particles can be negligible. In addition, we propose the deformed energy and momentum conservation laws for a generic physical process. In Scenario I the momentum conservation law is preserved while the energy conservation law is deformed. In Scenario II the energy conservation law is preserved while the momentum conservation law is deformed. We present the energy and momentum conservation laws in terms of neutrino momentum in Scenario I and in terms of neutrino energy in Scenario II. In such formats, the energy and momentum conservation laws are exactly the same as those in the traditional quantum field theory with Lorentz symmetry. Thus, all the above theoretical challenges can be automatically solved. We show explicitly that the Bremsstrahlung processes are forbidden and there is no problem for pion decays.


Sign in / Sign up

Export Citation Format

Share Document