moving medium
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 17)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 7 (2) ◽  
pp. 166-172
Author(s):  
Rosihin Rosihin ◽  
Ma’arij Ma’arij ◽  
Dadi Cahyadi ◽  
Supriyadi Supriyadi

Pengaturan tata letak mempunyai peranan penting dalam mempercepat proses operasi suatu sistem. Sistem pengaturan tata letak coil yang menggunakan random storage masih berdampak pada perusahaan seperti tingkat waktu dan kelelahan pekerja. Penempatan produk yang belum sesuai dengan spesifikasi tempat membuat proses kerja yang lama seperti pada saat loading shipment, handling coil dari line packing dan pada proses transfer ke intermediate. Penelitian ini bertujuan untuk mengefektifkan sistem tata letak coil sehingga dapat mengoptimalkan sistem kerja. Penelitian menggunakan metode class based storage yang membagi produk ke dalam tiga klasifikasi yaitu fast moving, medium moving, dan slow moving. Klasifikasi diawali dengan mengurutkan material berdasarkan frekuensi perpindahan.  Perubahan pengaturan tata letak coil mampu memberikan tingkat efisiensi yang lebih baik dibandingkan dengan random storage. Perbandingan waktu shipment lebih cepat dari area fast moving ke area shipment yaitu memakan waktu tempuh 1 menit. Tingkat efisiensi jarak mencapai 66% jika fast moving ditempatkan ke area C4 dan 29% jika fast moving ditempatkan di C2. Pengaturan dengan pendekatan class based storage mampu memberikan hasil yang optimal terkait dengan efisiensi jarak.


2021 ◽  
Author(s):  
Bi-Chun Dong ◽  
Run-Mei Zhang ◽  
Bin Yuan ◽  
Chuan-Yang Yu

Abstract Nearfield acoustic holography in a moving medium is a technique which is typically suitable for sound sources identification in a flow. In the process of sound field reconstruction, sound pressure is usually used as the input, but it may contain considerable background noise due to the interactions between microphones and flow moving at a high velocity. To avoid this problem, particle velocity is an alternative input, which can be obtained by using Laser Doppler Velocimetry in a non-intrusive way. However, there is a singular problem in the conventional propagator relating the particle velocity to the pressure, and it could lead to significant errors or even false results. In view of this, in this paper nonsingular propagators are deduced to realize accurate reconstruction in both cases that the hologram is parallel to and perpendicular to the flow direction. The advantages of the proposed method are analyzed, and simulations are conducted to verify the validation. The results show that the method can overcome the singular problem effectively, and the reconstruction errors are at a low level for different flow velocities, frequencies, and signal-to-noise ratios.


2021 ◽  
Vol 2 (11(75)) ◽  
pp. 34-42
Author(s):  
V. Mel’nick ◽  
N. Gnateiko

The forced movement of the submarine under the action of an acoustic pressure wave at rectilinear and uniform movement of the device is analyzed. The analysis of the dynamics of translational movement of the hull under the action of an acoustic pressure wave in an ideal environment, which makes it possible to assess the physical properties of the environment and the elastic properties of the outer hull on the value of the maximum movement of the submarine. It is proved that if the total pressure pulse is limited, then the water particles will receive certain displacements and it can be expected that under these conditions the displacement of the submarine will be determined. The results of the analysis make it possible to conduct a comparative analysis of the translational movement of the submarine under the action of an acoustic pressure wave, taking into account the characteristics of the moving medium, more precisely, taking into account the viscosity of the real medium


2021 ◽  
Vol 47 (1) ◽  
pp. 89-102
Author(s):  
Keijo Mönkkönen

  If a non-reversible Finsler norm is the sum of a reversible Finsler norm and a closed 1-form, then one can uniquely recover the 1-form up to potential fields from the boundary distance data. We also show a boundary rigidity result for Randers metrics where the reversible Finsler norm is induced by a Riemannian metric which is boundary rigid. Our theorems generalize Riemannian boundary rigidity results to some non-reversible Finsler manifolds. We provide an application to seismology where the seismic wave propagates in a moving medium.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bichun Dong ◽  
Runmei Zhang ◽  
Chuanyang Yu ◽  
Huan Li

Sound field prediction has practical significance in the control of noise generated by sources in a flow, for example, the noise in aero-engines and ventilation systems. Aiming at accurate and flexible prediction of time-dependent sound field, a finite-difference wavenumber-time domain method for sound field prediction in a uniformly moving medium is proposed. The method is based on the second-order convective wave equation, and the wavenumber-time domain representation of the sound pressure field on one plane is forward propagated via a derived recursive expression. In this paper, the recursive expression is first deduced, and then numerical stability and dispersion of the proposed method are analyzed, based on which the stability condition is given and the correction of dispersion related to the transition frequency is made. Numerical simulations are conducted to test the performance of the proposed method, and the results show that the method is valid and robust at different Mach numbers.


Author(s):  
Kenji Kawashima

We study the effect of the generation of the mechanical transverse wave (MTW) travelling in the opposite direction (OD) to a moving medium (MM) on the relativistic energy conservation law (RECL). From the viewpoint of the relativity of simultaneity (RS), the time on the coordinate coinciding with the advance end of the wave (AEW) travelling toward the rear of the MM passes faster than that on the coordinate coinciding with the wave source (WS). Then the AEW in the MM travels forward compared to that in the rest frame of reference (RFR) which is stationary relative to the medium when the time on the coordinate coinciding with the WS is same for each inertial frame of reference (IFR). Hence, the coordinate interval (CI) between the AEW and WS in the MM is observed to be larger than that between them in the RFR. We show that this difference holds true for the CI of any portion having transverse velocities mutually converted by the Lorentz transformation (LT). This difference in the CI leads to that in the rest mass (RM). We demonstrate that the RM included in wave motion (WM) in the MM is larger than one included in WM in the RFR when comparing the portions having transverse velocities mutually converted by the LT. This relation holds true for all portions in WM. Therefore, the total coordinate interval of the portion (CIP) and total RM (TRM) included in WM in the MM (WMMM) are large compared to them included in WM in the RFR. Furthermore, we compare the relativistic kinetic energy (RKE) of the MTW travelling in the OD to the MM (ODMM) with that of the MTW propagating in the direction vertical to the moving direction of the medium. We prove that the CIP and RM included in the former MTW are larger than them included in the latter MTW when comparing each portion with the same transverse velocity (TV). Moreover, the total CIP and TRM included in the former MTW are also large compared to them included in the latter MTW. The reason for these is that the latter CIP and RM are equal to them in the RFR when comparing the portions having transverse velocities mutually converted by the LT. On the other hand, the energy supplied to generate each MTW is the same. From these, we demonstrate that the RKE of the MTW travelling in the ODMM can be larger than the total relativistic energy (TRE) of the MTW propagating in the direction vertical to the moving direction of the medium. Consequently, we propose a violation of the RECL and Einstein’s principle of relativity (EPR) because the TRE is not necessarily conserved in the IFR in which the medium is moving.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 202
Author(s):  
Zoé-Lise Deck-Léger ◽  
Xuezhi Zheng ◽  
Christophe Caloz

This paper extends current knowledge on electromagnetic wave scattering from bounded moving media in several regards. First, it complements the usual dispersion relation of moving media, ω(θk) (θk: phase velocity direction, associated with the wave vector, k), with the equally important impedance relation, η(θS) (θS: group velocity direction, associated with the Poynting vector, S). Second, it explains the interluminal-regime phenomenon of double-downstream wave transmission across a stationary interface between a regular medium and the moving medium, assuming motion perpendicular to the interface, and shows that the related waves are symmetric in terms of the energy refraction angle, while being asymmetric in terms of the phase refraction angle, with one of the waves subject to negative refraction, and shows that the wave impedances of the two transmitted waves are equal. Third, it generalizes the problem to the case where the medium moves obliquely with respect to the interface. Finally, it highlights the connection between this problem and a spacetime modulated medium.


2021 ◽  
Vol 149 (4) ◽  
pp. A139-A139
Author(s):  
D. Keith Wilson
Keyword(s):  

Acta Acustica ◽  
2021 ◽  
Vol 5 ◽  
pp. 26
Author(s):  
Philipp Schäfer ◽  
Michael Vorländer

In this paper, an open-source framework for ray tracing in a stratified moving medium is introduced. This framework provides an efficient method to find eigen-rays connecting a source with a receiver and is designed for the purpose of aircraft noise auralization. The method is tested with respect to accuracy and run-time in an aircraft flyover scenario and compared to a state of the art method. The investigation showed that this method provides eigenrays with preset accuracy for source positions most relevant for flyover scenarios and that it is significantly faster than the state of the art method. According to the performance analysis, the presented approach has great potential for integration into future real-time auralizations of aircraft noise.


Sign in / Sign up

Export Citation Format

Share Document