scholarly journals Equations of Electrodynamics

Author(s):  
Pavel Gorev

Maxwell’s equations are valid only for a stationary observation point, therefore, to adequately describe real processes so far we have had to move to a moving reference frame. This paper presents the equations of electrodynamics for the moving observation point, it is shown that plane and spherical electromagnetic waves are their solutions, while the spherical wave propagates only outward, which cannot be said about Maxwell’s equations. The fields of uniformly moving charges are also solutions of the equations. Now there is no need to move to a moving reference frame, to use four-dimensional space and covariant form of equations. The question of finding a universal form of the equations that allows a solution in the form of the field of an arbitrarily moving charge remains open. This raises the question of the existence of a two-parameter group of transformations of electromagnetic fields along with the known one-parameter group has been posed. The phenomena derived from the equations, which make an additional contribution to the phase overrun in the Aharonov-Bohm effect are considered. The equation of motion of a charged particle in an electromagnetic field without simplifying approximations is considered, which allows us to take into account the radiation effects. It is shown that the fields in a moving observation point depend on its velocity and acceleration. In particular, although in a constant uniform electric field a force qE acts on a motionless charged particle, but on the same motionless but not fixed particle the force 4/3qE acts already, because it has a nonzero acceleration and the electric field at this point is larger. As the speed increases, the field decreases, and when it reaches the speed of light, when the particle stops accelerating, the force again becomes equal to qE The principle of operation of an unconventional alternator in a constant electric field and its corresponding engine, as well as new types of direct and impulse current generators, predicted by the equations, are described.

1994 ◽  
Vol 279 ◽  
pp. 197-215 ◽  
Author(s):  
Yuri Solomentsev ◽  
John L. Anderson

The hydrodynamic theory of slender bodies is used to model electrophoretic motion of a slender particle having a charge (zeta potential) that varies with position along its length. The theory is limited to systems where the Debye screening length of the solution is much less than the typical cross-sectional dimension of the particle. A stokeslet representation of the hydrodynamic force is combined with the Lorentz reciprocal theorem for Stokes flow to develop a set of linear equations which must be solved for the components of the translational and angular velocities of the particle. Sample calculations are presented for the electrophoretic motion of straight spheroids and cylinders and a torus in a uniform electric field. The theory is also applied to a straight uniformly charged particle in a spatially varying electric field. The uniformly charged particle rotates into alignment with the principal axes of ∇E∞; we suggest that such alignment can lead to electrophoretic transport of particles through a small aperture in an otherwise impermeable wall. The theory developed here is more general than just for electrophoresis, since the final result is expressed in terms of a general 'slip velocity’ at the surface of the particle. Thus, the results are applicable to diffusiophoresis of slender particles if the proper slip-velocity coefficient is used.


Author(s):  
Pavel Gorev

The equations of electrodynamics are presented, it is shown that plane and spherical electromagnetic waves are their solutions, while the spherical wave propagates only outward. Fields of uniformly moving charges are also solutions of equations. The question of finding a universal form of equations admitting a solution in the form of a field of an arbitrarily moving charge remains open. The question is raised about the existence of a two-parameter group of transformations of electromagnetic fields along with the well-known one-parameter group. The equation of motion of a charged particle in an electromagnetic field is considered without simplifying approximations. The principle of operation of an unconventional alternator in a constant electric field and a corresponding engine, as well as new types of generators of direct and impulse current, are described.


Sign in / Sign up

Export Citation Format

Share Document