scholarly journals A Literature Review of Semi-functional Partial Linear Regression Models

Author(s):  
Mohammad Fayaz

Background: In the functional data analysis (FDA), the hybrid or mixed data are scalar and functional datasets. The semi-functional partial linear regression model (SFPLR) is one of the first semiparametric models for the scalar response with hybrid covariates. Various extensions of this model are explored and summarized. Methods: Two first research articles, including “semi-functional partial linear regression model”, and “Partial functional linear regression” have more than 300 citations in Google Scholar. Finally, only 106 articles remained according to the inclusion and exclusion criteria such as 1) including the published articles in the ISI journals and excluding 2) non-English and 3) preprints, slides, and conference papers. We use the PRISMA standard for systematic review. Results: The articles are categorized into the following main topics: estimation procedures, confidence regions, time series, and panel data, Bayesian, spatial, robust, testing, quantile regression, varying Coefficient Models, Variable Selection, Single-index model, Measurement error, Multiple Functions, Missing values, Rank Method and Others. There are different applications and datasets such as the Tecator dataset, air quality, electricity consumption, and Neuroimaging, among others. Conclusions: SFPLR is one of the most famous regression modeling methods for hybrid data that has a lot of extensions among other models.

1993 ◽  
Vol 9 (4) ◽  
pp. 570-588 ◽  
Author(s):  
Keith Knight

This paper considers the asymptotic behavior of M-estimates in a dynamic linear regression model where the errors have infinite second moments but the exogenous regressors satisfy the standard assumptions. It is shown that under certain conditions, the estimates of the parameters corresponding to the exogenous regressors are asymptotically normal and converge to the true values at the standard n−½ rate.


2019 ◽  
Vol 28 (4) ◽  
pp. 679-693
Author(s):  
Jiang Du ◽  
Hui Zhao ◽  
Zhongzhan Zhang

2019 ◽  
Vol 30 (4) ◽  
pp. 307-316 ◽  
Author(s):  
Ana Paula R Gonçalves ◽  
Bruna L Porto ◽  
Bruna Rodolfo ◽  
Clovis M Faggion Jr ◽  
Bernardo A. Agostini ◽  
...  

Abstract This study investigated the presence of co-authorship from Brazil in articles published in top-tier dental journals and analyzed the influence of international collaboration, article type (original research or review), and funding on citation rates. Articles published between 2015 and 2017 in 38 selected journals from 14 dental subareas were screened in Scopus. Bibliographic information, citation counts, and funding details were recorded for all articles (N=15619). Collaboration with other top-10 publishing countries in dentistry was registered. Annual citations averages (ACA) were calculated. A linear regression model assessed differences in ACA between subareas. Multilevel linear regression models evaluated the influence of article type, funding, and presence of international collaboration in ACA. Brazil was a frequent co-author of articles published in the period (top 3: USA=25.5%; Brazil=13.8%; Germany=9.2%) and the country with most publications in two subareas. The subjects with the biggest share of Brazil are Operative Dentistry/Cariology, Dental Materials, and Endodontics. Brazil was second in total citations, but fifth in citation averages per article. From the total of 2155 articles co-authored by Brazil, 74.8% had no co-authorship from other top-10 publishing countries. USA (17.8%), Italy (4.2%), and UK (3.2%) were the main co-author countries, but the main collaboration country varied between subjects. Implantology and Dental Materials were the subjects with most international co-authorship. Review articles and articles with international collaboration were associated with increased citation rates, whereas the presence of study funding did not influence the citations.


Sign in / Sign up

Export Citation Format

Share Document