scholarly journals Cross Entropy Covariance Matrix Adaptation Evolution Strategy Solving the Bi-Level Bidding Optimization Problem in Local Energy Markets with Renewables

Author(s):  
Dharmesh Dabhi ◽  
Kartik Pandya ◽  
Joao Soares ◽  
Fernando Lezama ◽  
Zita Vale

Abstract: The increased penetration of renewables in distribution power systems has motivated researchers to take significant interest in local energy transactions. The major goal of Local Energy Markets (LEM) is to promote the participation of small consumers in energy transactions and providing an opportunity for transactive energy systems. Such energy transactions in LEM are considered as a bi-level optimization problem in which all agents at upper and lower levels try to maximize their profits. But typical bi-level problem is very complex as it is inherently nonlinear, discontinued and strongly NP-hard. So, this article proposes the application of hybridized Cross Entropy Covariance Matrix Adaptation Evolution Strategy (CE-CMAES) to tackle such a complex bi-level problem of LEM. The proposed CE-CMAES secured the 1st rank in Testbed-2 entitled, “Bi-level optimization of end-users’ bidding strategies in local energy markets (LM)” at international competitions on Smart Grid Problems, held at GECCO 2020 and WCCI 2020. CE method is used for global exploration of search space and CMAES is used for local exploitation as its adaptive step-size mechanism prevents its premature convergence. A practical distribution system with renewable energy penetration is considered for simulation. The comparative analysis shows that the overall cost, mean fitness and Ranking Index (R.I) obtained from CE-CMAES are superior to those obtained from the state-of-the-art participated algorithms. Wilcoxon Signed Rank Statistical test also proves that CE-CMAES is statistically different from the tested algorithms.

2012 ◽  
Vol 215-216 ◽  
pp. 133-137
Author(s):  
Guo Shao Su ◽  
Yan Zhang ◽  
Zhen Xing Wu ◽  
Liu Bin Yan

Covariance matrix adaptation evolution strategy algorithm (CMA-ES) is a newly evolution algorithm. It has become a powerful tool for solving highly nonlinear multi-peak optimization problems. In many real-world optimization problems, the location of multiple optima is often required in a search space. In order to evaluate the solution, thousands of fitness function evaluations are involved that is a time consuming or expensive processes. Therefore, conventional stochastic optimization methods meet a special challenge for a very large number of problem function evaluations. Aiming to overcome the shortcoming of stochastic optimization methods in the high calculation cost, a truss optimal method based on CMA-ES algorithm is proposed and applied to solve the section and shape optimization problems of trusses. The study results show that the method is feasible and has the advantages of high accuracy, high efficiency and easy implementation.


2019 ◽  
Vol 83 ◽  
pp. 105680 ◽  
Author(s):  
Yajun Liang ◽  
Xiaofei Wang ◽  
Hui Zhao ◽  
Tong Han ◽  
Zhenglei Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document