lt code
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 7)

H-INDEX

4
(FIVE YEARS 0)

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Hang Zhang ◽  
Fanglin Niu ◽  
Ling Yu ◽  
Si Zhang

In traditional wireless sensor networks, information transmission usually uses data encryption methods to prevent information from being stolen illegally. However, once the encryption methods are leaked, eavesdropping nodes can easily obtain information. LT codes are rateless codes; if it is attacked by random channel noise, the decoding process will change and the decoding overhead will also randomly change. When it is used for physical layer communication of wireless sensor networks, it ensures that the destination node recovers all the information without adding the key, while the eavesdropping node can only obtain part of the information to achieve wireless information security transmission. To reduce the intercept efficiency of eavesdropping nodes, a physical layer security (PLS) method of LT codes with double encoding matrix reorder (DEMR-LT codes) is proposed. This method performs two consecutive LT code concatenated encoding on the source symbol, and part of the encoding matrix is reordered according to the degree value of each column from large to small, which reduces the probability of eavesdropping nodes recovering the source information. Experimental results show that compared with other LT code PLS schemes, DEMR-LT codes only increase the decoding overhead by a small amount. However, it can effectively reduce the intercept efficiency of eavesdropping nodes and improve information transmission security.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Lei Zhang ◽  
Li Su

This paper presents the performance of a hard decision belief propagation (HDBP) decoder used for Luby transform (LT) codes over additive white Gaussian noise channels; subsequently, three improved HDBP decoders are proposed. We first analyze the performance improvement of the sorted ripple and delayed decoding process in a HDBP decoder; subsequently, we propose ripple-sorted belief propagation (RSBP) as well as ripple-sorted and delayed belief propagation (RSDBP) decoders to improve the bit error rate (BER). Based on the analysis of the distribution of error encoded symbols, we propose a ripple-sorted and threshold-based belief propagation (RSTBP) decoder, which deletes low-reliability encoded symbols, to further improve the BER. Degree distribution significantly affects the performance of LT codes. Therefore, we propose a method for designing optimal degree distributions for the proposed decoders. Through simulation results, we demonstrate that the proposed RSBP and RSDBP decoders provide significantly better BER performances than the HDBP decoder. RSDBP and RSTDP combined with the proposed degree distributions outperformed state-of-the-art degree distributions in terms of the number of encoded symbols required to recover an input symbol correctly (NERRIC) and the frame error rate (FER). For a hybrid decoder formulated by combining RSDBP with a soft decision belief propagation decoder, the proposed degree distribution outperforms the other degree distributions in terms of decoding complexity.


Author(s):  
Yachen Liu ◽  
Pengcheng Wang ◽  
Dehong Tian ◽  
Haixin Sun ◽  
Jie Qi ◽  
...  

LT code, as a channel coding scheme with good adaptability to the channel, has a stable performance in data transmission of underwater acoustic communication. In the case of large decoding overhead, the LT code can reach the ideal bit error rate(BER), but when the length of the encoded data is short, its coding and decoding performance is not ideal. LT code was applied to underwater acoustic communication by combining with orthogonal frequency division multiplexing (OFDM), and a LT-OFDM system was constructed. To improve the performance of LT code in the case of short code length, a method for degree distribution optimization was proposed on the objective of minimizing BER and minimizing average coding degree. Simulation and sea trial results show that under the same BER this method can optimize the system, transform 7%-22% conversion, and reduce the complexity of coding and decoding.


Author(s):  
Nadhir Ibrahim Abdulkhaleq ◽  
Faeza Abbas Abed ◽  
Ihsan Jabbar Hasan ◽  
Falah Hasan Mahdi

Luby Transform (LT) code is considered as an efficient erasure fountain code. The construction of the coded symbols is based on the formation of the degree distribution which played a significant role in ensuring a smooth decoding process. In this paper, we propose a new encoding scheme for LT code generation. This encoding presents a deterministic degree generation (DDG) with time hoping pattern which found to be suitable for the case of short data length where the well-known Robust Soliton Distribution (RSD) witnessed a severe performance degradation. It is shown via computer simulations that the proposed (DDG) has the lowest records for unrecovered data packets when compared to that using random degree distribution like RSD and non-uniform data selection (NUDS). The success interpreted in decreasing the overhead required for data recovery to the order of 25% for a data length of 32 packets.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 103956-103972
Author(s):  
Hai Tian ◽  
Dan-Feng Zhao ◽  
Yun-Fan Yang ◽  
Rui Xue

Author(s):  
Jingxuan Huang ◽  
Zesong Fei ◽  
Dai Jia ◽  
Ce Sun ◽  
Xinyi Wang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document