scholarly journals Sums and Partial Sums of Horadam Sequences: The Sum Formulas of $\sum_{k=0}^{n}x^{k}W_{k}$ and $ \sum_{k=n}^{n+m}x^{k}W_{k}$ via Generating Functions

Author(s):  
Yüksel Soykan

In this paper, we present sums and partial sums of Horadam sequences via generating functions which extends a recent result of Prodinger.

Author(s):  
Kunle Adegoke

We study various properties of the polygonal numbers; such as their recurrence relations, fundamental identities, weighted binomial and ordinary sums and the partial sums and generating functions of their powers. A feature of our results is that they are presented naturally in terms of the polygonal numbers themselves and not in terms of arbitrary integers as is the case in most literature.


Author(s):  
Kunle Adegoke

We study various properties of the polygonal numbers; such as their recurrence relations; fundamental identities; weighted binomial and ordinary sums; partial sums and generating functions of their powers; and a continued fraction representation for them. A feature of our results is that they are presented naturally in terms of the polygonal numbers themselves and not in terms of arbitrary integers; unlike what obtains in most literature.


10.37236/1059 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Anisse Kasraoui ◽  
Jiang Zeng

We construct an involution on set partitions which keeps track of the numbers of crossings, nestings and alignments of two edges. We derive then the symmetric distribution of the numbers of crossings and nestings in partitions, which generalizes a recent result of Klazar and Noy in perfect matchings. By factorizing our involution through bijections between set partitions and some path diagrams we obtain the continued fraction expansions of the corresponding ordinary generating functions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Helmut Prodinger

AbstractA new family of generalized Pell numbers was recently introduced and studied by Bród ([2]). These numbers possess, as Fibonacci numbers, a Binet formula. Using this, partial sums of arbitrary powers of generalized Pell numbers can be summed explicitly. For this, as a first step, a power P lnis expressed as a linear combination of Pmn. The summation of such expressions is then manageable using generating functions. Since the new family contains a parameter R = 2r, the relevant manipulations are quite involved, and computer algebra produced huge expressions that where not trivial to handle at times.


Author(s):  
Ankush Goswami ◽  
Venkata Raghu Tej Pantangi

AbstractRecently, Li (Int J Number Theory, 2020) obtained an asymptotic formula for a certain partial sum involving coefficients for the polynomial in the First Borwein conjecture. As a consequence, he showed the positivity of this sum. His result was based on a sieving principle discovered by himself and Wan (Sci China Math, 2010). In fact, Li points out in his paper that his method can be generalized to prove an asymptotic formula for a general partial sum involving coefficients for any prime $$p>3$$ p > 3 . In this work, we extend Li’s method to obtain asymptotic formula for several partial sums of coefficients of a very general polynomial. We find that in the special cases $$p=3, 5$$ p = 3 , 5 , the signs of these sums are consistent with the three famous Borwein conjectures. Similar sums have been studied earlier by Zaharescu (Ramanujan J, 2006) using a completely different method. We also improve on the error terms in the asymptotic formula for Li and Zaharescu. Using a recent result of Borwein (JNT 1993), we also obtain an asymptotic estimate for the maximum of the absolute value of these coefficients for primes $$p=2, 3, 5, 7, 11, 13$$ p = 2 , 3 , 5 , 7 , 11 , 13 and for $$p>15$$ p > 15 , we obtain a lower bound on the maximum absolute value of these coefficients for sufficiently large n.


Author(s):  
Kunle Adegoke

We study various properties of the polygonal numbers; such as their recurrence relations, fundamental identities, weighted binomial and ordinary sums and the partial sums and generating functions of their powers. A feature of our results is that they are presented naturally in terms of the polygonal numbers themselves and not in terms of arbitrary integers as is the case in most literature.


10.37236/1729 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Graham Denham

Let $a_1,\ldots,a_n$ be distinct, positive integers with $(a_1,\ldots,a_n)=1$, and let k be an arbitrary field. Let $H(a_1,\ldots,a_n;z)$ denote the Hilbert series of the graded algebra k$[t^{a_1},t^{a_2},\ldots,t^{a_n}]$. We show that, when $n=3$, this rational function has a simple expression in terms of $a_1,a_2,a_3$; in particular, the numerator has at most six terms. By way of contrast, it is known that no such expression exists for any $n\geq4$.


Sign in / Sign up

Export Citation Format

Share Document