scholarly journals On the Distributional Characterization of Graph Models of Water Distribution Networks in Wasserstein Spaces

Author(s):  
Antonio Candelieri ◽  
Andrea Ponti ◽  
Francesco Archetti

This paper is focused on two topics very relevant in water distribution networks (WDNs): vulnerability assessment and the optimal placement of water quality sensors. The main novelty element of this paper is to represent the data of the problem, in this case all objects in a graph underlying a water distribution network, as discrete probability distributions. For vulnerability (and the related issue of re-silience) the metrics from network theory, widely studied and largely adopted in the water research community, reflect connectivity expressed as closeness centrality or, betweenness centrality based on the average values of shortest paths between all pairs of nodes. Also network efficiency and the related vulnerability measures are related to average of inverse distances. In this paper we propose a different approach based on the discrete probability distribution, for each node, of the node-to-node distances. For the optimal sensor placement, the elements to be represented as dis-crete probability distributions are sub-graphs given by the locations of water quality sensors. The objective functions, detection time and its variance as a proxy of risk, are accordingly represented as a discrete e probability distribution over contamination events. This problem is usually dealt with by EA algorithm. We’ll show that a probabilistic distance, specifically the Wasserstein (WST) distance, can naturally allow an effective formulation of genetic operators. Usually, each node is associated to a scalar real number, in the optimal sensor placement considered in the literature, average detection time, but in many applications, node labels are more naturally expressed as histograms or probability distributions: the water demand at each node is naturally seen as a histogram over the 24 hours cycle. The main aim of this paper is twofold: first to show how different problems in WDNs can take advantage of the representational flexibility inherent in WST spaces. Second how this flexibility translates into computational procedures.

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 1999
Author(s):  
Malvin S. Marlim ◽  
Doosun Kang

Contamination in water distribution networks (WDNs) can occur at any time and location. One protection measure in WDNs is the placement of water quality sensors (WQSs) to detect contamination and provide information for locating the potential contamination source. The placement of WQSs in WDNs must be optimally planned. Therefore, a robust sensor-placement strategy (SPS) is vital. The SPS should have clear objectives regarding what needs to be achieved by the sensor configuration. Here, the objectives of the SPS were set to cover the contamination event stages of detection, consumption, and source localization. As contamination events occur in any form of intrusion, at any location and time, the objectives had to be tested against many possible scenarios, and they needed to reach a fair value considering all scenarios. In this study, the particle swarm optimization (PSO) algorithm was selected as the optimizer. The SPS was further reinforced using a databasing method to improve its computational efficiency. The performance of the proposed method was examined by comparing it with a benchmark SPS example and applying it to DMA-sized, real WDNs. The proposed optimization approach improved the overall fitness of the configuration by 23.1% and showed a stable placement behavior with the increase in sensors.


2017 ◽  
Vol 20 (6) ◽  
pp. 1286-1295 ◽  
Author(s):  
Xiang Xie ◽  
Quan Zhou ◽  
Dibo Hou ◽  
Hongjian Zhang

Abstract The performance of model-based leak detection and localization techniques heavily depends on the configuration of a limited number of sensors. This paper presents a sensor placement optimization strategy that guarantees sufficient diagnosability while satisfying the budget constraint. Based on the theory of compressed sensing, the leak localization problem could be transformed into acquiring the sparse leak-induced demands from the available measurements, and the average mutual coherence is devised as a diagnosability criterion for evaluating whether the measurements contain enough information for identifying the potential leaks. The optimal sensor placement problem is then reformulated as a {0, 1} quadratic knapsack problem, seeking an optimal sensor placement scheme by minimizing the average mutual coherence to maximize the degree of diagnosability. To effectively handle the complicated real-life water distribution networks, a validated binary version of artificial bee colony algorithm enhanced by genetic operators, including crossover and swap, is introduced to solve the binary knapsack problem. The proposed strategy is illustrated and validated through a real-life water distribution network with synthetically generated field data.


Sign in / Sign up

Export Citation Format

Share Document