leak location
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 41)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Juan Li ◽  
Wenjun Zheng ◽  
Changgang Lu

Abstract In the water supply network, leakage of pipes will cause water loss and increase the risk of environmental pollution. For water supply systems, identifying the leak point can improve the efficiency of pipeline leak repair. Most existing leak location methods can only locate the leak point approximately to the node or pipe section of the pipe network, but cannot locate the specific location of the pipe section. This paper presents a framework for accurate location of water supply network leakage based on ResNet. The framework is to pinpoint leaks to specific locations along the pipeline. The leakage of two kinds of pipe networks is simulated. For a pipe network containing 40 pipes, the positioning accuracy of the pipe section is 0.94, and the MSE of the specific location of the leakage point is 0.000435. For the pipe network containing 117 pipes, the positioning accuracy of the pipe section is 0.91, and the MSE of the specific location of the leakage point is 0.0009177, and the leak location ability under different sensor arrangements is analyzed. Experiments verify the robustness and applicability of the framework.


Author(s):  
Mingyang Liu ◽  
Jin Yang ◽  
Endong Fan ◽  
Jing Qiu ◽  
Wei Zheng

Abstract Water pipe networks have a large number of branch joints. Branch joint shunting generates vortices in the fluid, which excite the pipe wall to produce a type of branch noise. The branch noise is coupled with the leak source signal through the pipe. Here, a novel leak location protocol based on the complex-valued FastICA method (C-FastICA) is proposed to address the leak location problem under the branch noise interference. The C-FastICA, a complex-value domain blind deconvolution algorithm, effectively extended the cost function, constraint function, and iteration rules of the instantaneous linear FastICA into the complex-valued domain. The C-FastICA method was used to realize the separation of branch noise and leak source signal. The experimental results showed that the separation efficiency of the C-FastICA was higher than that of time-domain blind convolution separation (T-BCS). Furthermore, the relative location error of the C-FastICA method to the leak point was less than 14.238%, which was significantly lower than in traditional T-BCS and direct cross-correlation (DCC) technology.


Author(s):  
Caroline Blocher ◽  
Filippo Pecci ◽  
Ivan Stoianov

AbstractHydraulic model-based leak (burst) localisation in water distribution networks is a challenging problem due to a limited number of hydraulic measurements, a wide range of leak properties, and model and data uncertainties. In this study, prior assumptions are investigated to improve the leak localisation in the presence of uncertainties. For example, $$\ell _2$$ ℓ 2 -regularisation relies on the assumption that the Euclidean norm of the leak coefficient vector should be minimised. This approach is compared with a method based on the sensitivity matrix, which assumes the existence of only a single leak. The results show that while the sensitivity matrix method often yields a better leak location estimate in single leak scenarios, the $$\ell _2$$ ℓ 2 -regularisation successfully identifies a search area for pinpointing the accurate leak location. Furthermore, it is shown that the additional error introduced by a quadratic approximation of the Hazen-Williams formula for the solution of the localisation problem is negligible given the uncertainties in Hazen-Williams resistance coefficients in operational water network models.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2924
Author(s):  
Marlon Jesús Ares-Milián ◽  
Marcos Quiñones-Grueiro ◽  
Cristina Verde ◽  
Orestes Llanes-Santiago

Model-based and data-driven methods are commonly used in leak location strategies in water distribution networks. This paper formulates a hybrid methodology in two stages that complements the advantages and disadvantages of data-driven and model-based strategies. In the first stage, a support vector machine multiclass classifier is used to reduce the search space for the leak location task. In the second stage, leak location task is formulated as an inverse problem, and solved using a variation of the differential evolution algorithm called topological differential evolution. The robustness of the method is tested considering measurement and varying demand uncertainty conditions ranging from 5 to 15% of node nominal demands. The performance of the hybrid method is compared to the support vector machine classifier and topological differential evolution approaches as standalone methods of leak location. The hybrid proposal shows higher performance in terms of location accuracy, zone size, and computational load.


2021 ◽  
Vol 13 (10) ◽  
pp. 168781402110534
Author(s):  
Peifeng Lin ◽  
Donghui Lei ◽  
Jiang Liao

Experimental and numerical methods are used to locate the pipeline leakage in the present work. The weak compressibility of the fluid is taken into account when simulating the propagation of negative pressure wave (NPW) in the pipeline. The NPW attenuation coefficient is used to describe the influences of curvature radius on location accuracy. The results indicate that when the curvature radius is small, the location accuracy of pipeline leakage is low. When the radius of curvature increases or the inlet pressure increases, the accuracy of pipeline leak location is improved. Besides, with the change of inlet pressure, pressure, and velocity distributions in the elbow with different curvature radii are investigated. When the curvature radius of the elbow is three to four times of pipe diameter, the measurement accuracy of leakage location is the best. When the inlet pressure of the pipeline is 0.7 MPa, the sensitivity of the pipeline detection is the highest. The cavitation corrosion at the elbow is the most obvious. Therefore, the elbow is the area where pipeline leakage occurs most frequently.


2021 ◽  
Author(s):  
Caroline Blocher ◽  
Filippo Pecci ◽  
Ivan Stoianov

Abstract Hydraulic model-based leak (burst) localisation in water networks is a challenging problem due to uncertainties, the limited number of hydraulic measurements, and the wide range of leak properties. In this study, we investigate the use of prior assumptions to improve the leak localisation in the presence of model uncertainties. For example, 𝓁2-regularisation relies on the assumption that the Euclidean norm of the leak coefficient vector should be minimised. This approach is compared with a method based on the sensitivity matrix, which assumes the existence of only a single leak. We show that while applying the sensitivity matrix often yields a better estimate of the leak location in single leak scenarios, the 𝓁2-regularisation successfully identifies a leak search area for pinpointing the accurate leak location. Furthermore, we demonstrate that the additional error introduced by a quadratic approximation of the Hazen-Williams formula for the solution of the localisation problem is negligible given the uncertainties in Hazen-Williams resistance coefficients in operational water network models.


Sign in / Sign up

Export Citation Format

Share Document