Flexible Process Planning Method for Milling

2011 ◽  
Vol 5 (5) ◽  
pp. 700-707 ◽  
Author(s):  
Eiji Morinaga ◽  
◽  
Masayuki Yamada ◽  
Hidefumi Wakamatsu ◽  
Eiji Arai ◽  
...  

This paper concerns the development of flexible Computer-Aided Process Planning (CAPP). In the agile manufacturing which has been strongly promoted, manufacturing situation changes dynamically. Therefore, the CAPP method which can be adaptable to these dynamic changes is required. From this point of view, there has been the method which is mainly composed of the following three steps – (i) decomposing the Total Removal Volume (TRV), (ii) recomposing parts obtained by decomposition, and (iii) extracting an optimal set of parts. Steps (i) and (ii) require a high computational load. We propose solving this problem by focusing on concave parts of the TRV in decomposition. The proposed method is also enhanced toward the multiaxis milling processes. A case study demonstrates the feasibility and effectiveness of our proposal.

2014 ◽  
Vol 8 (3) ◽  
pp. 396-405 ◽  
Author(s):  
Eiji Morinaga ◽  
◽  
Takuma Hara ◽  
Hiroki Joko ◽  
Hidefumi Wakamatsu ◽  
...  

Process planning plays an important role as a bridge between product design and manufacturing. Computer-aided process planning (CAPP) has been a topic of discussion in this half century. The recent diversification in customers’ needs has been driving the development of agile manufacturing that can adapt to different manufacturing situations. CAPP should also be discussed from this point of view and, to this end, a set of flexible process planning methods have been proposed. Unlike conventional CAPP methods, these methods first generate all the feasible process plans. These are then evaluated, and then an optimal plan is selected. Therefore, it is possible to quickly provide an optimal new plan in the event of a change in the situation, by re-evaluating the plans against the new situation. However, these methods generally involve a large computational load, since the full search approach is taken to select an optimal plan. This study set out to reduce the computational load by formulating the selection process as a 0-1 integer programming problem that can now be solved thanks to recent developments in computer technology and solvers. Case studies have proven the efficacy of this method.


Author(s):  
Eiji Morinaga ◽  
Takuma Hara ◽  
Hidefumi Wakamatsu ◽  
Eiji Arai

Computer support technology for modern manufacturing should deal with variable situations to accomodate to high-mix low-volume manufacturing. Computer-aided process planning (CAPP) has been discussed from this point of view, and a method for flexible CAPP, which generates a new proper process plan easily when manufacturing situation has changed, was proposed for rough milling by a three-axis vertical machine. This method was enhanced to handle millings by a multiaxis vertical machine and by both vertical and horizontal machines. The basic idea of these methods is to generate all process plans and then choose the best one. In the choice process of the best plan, all of the generated plans are evaluated. However, this process requires a large computational power when employed in actual machining where products of complex shapes have to be produced. For this computational problem, this paper discusses application of the mathematical optimization framework to this choice process.


Author(s):  
Wencai Wang ◽  
Derek Yip-Hoi ◽  
Zhengdong Huang

Process planning and system design for automotive powertrain machining represent a large investment in engineering upon which decisions are made for equipment acquisitions that typically falls in the range of hundreds of millions of dollars. The use of Computer-Aided Process Planning (CAPP) and system design (CASD) applications in the early stages of a new engine program can greatly increase the reliability and quality of the solutions upon which these decisions are made. They can also reduce the engineering time and the time to evaluate proposals from system integrators. This leads to shorter product launch windows giving manufacturers a competitive edge. This paper reports upon a case study conducted to evaluate the state of the art in of CAPP and CASD technology based on a typical configuration of commercial and evolving software applications. The results show maturity of the technology in most of the core technologies. Challenges exist in integrating these solutions into a manufacturer’s working environment.


Author(s):  
Xun Xu

Products and their components are designed to perform certain functions. Design specifi- cations ensure the functionality aspects. The task in manufacturing is then to produce the components that meet the design specifications. The components are in turn assembled into the final products. When computers are used to assist the process planning and manufacturing activities, multiple benefits can be had. The related technologies are known as computer-aided process planning and computer-aided manufacturing. Often, they are not separable and are therefore discussed in tandem in this chapter. It should be emphasized that process planning is not only for metal-cutting processes. We need process planning for many other manufacturing processes such as casting, forging, sheet metal forming, compositesz and ceramic fabrication. In this chapter, the basic steps of developing a process plan are explained. There are two approaches to carrying out process planning tasks—manual experience-based method and computer-aided process planning method. The focus is on two computer-aided process planning methods, the variant approach, and generative approach. These discussions on process planning have been limited to machining processes. The topic of computer-aided manufacturing, on the other hand, is discussed with a more general point of view. A fictitious CAM plant is presented and some of the key aspects of CAM in a manufacturing system are discussed. A more specific version of CAM (i.e. computer numerical control) will be covered in Chapters VIII and IX.


2016 ◽  
Vol 826 ◽  
pp. 15-22
Author(s):  
Mahmoud Houshmand ◽  
Arya Karami ◽  
Reza Ghasemi

Nowadays the world of manufacturing and production has been encountered with a constantly changing behavior’s of customers. Moreover in the global market, a company can survive if it has the efficient capabilities for rapid product development.These capabilities are known to be important and they mainly affect on the market penetration and cost reduction. One way to enhance such capabilities is to integrate the essential activities of a manufacturing with the help of information technology. In recent years, the researchers have proposed integration of the computer-aided design (CAD), computer-aided manufacture (CAM) and computer-aided process planning (CAPP) as the main phases of product development lifecycle. These phases play an important role in the manufacturing environment and their integration will result in high-class production with minimum lead time. This paper focuses on the die design and process planning activities to produce the molds seamlessly . It studies the recent works on integration solutions and proposes an integration framework for glass bottle manufacturing companies.The paper considers the integration of the part design, macro process planning and the mold design activities. Moreover, the solution has used the ISO 10303 (STEP standard-International Standard for the Exchange of Product data). The novel aspects of the framework have been discussed through a case study. The case study highlights the integration of glass bottle design, process planning and bottle mold design to show the capabilities of the proposed framework.


2014 ◽  
Vol 598 ◽  
pp. 591-594 ◽  
Author(s):  
Li Yan Zhang

ISO 14649, known as STEP-NC, is new model of data transfer between CAD/CAM systems and CNC machines. In this paper, the modeling based on machining feature is proposed. The machining feature comes from the manufacturing process considering the restriction of machining technology and machining resource. Then the framework for computer aided process planning is presented, where the algorithms of operation planning is studied. The practical example has been provided and results indicate that machining feature based model can integrate with CAPP and STEP-NC seamlessly.


Sign in / Sign up

Export Citation Format

Share Document