Evolutionary Nonlinear Multimodel Partitioning Filters

Author(s):  
G. N. Befigiannis ◽  
◽  
E. N. Demiris ◽  
S. D. Likothanassis ◽  
◽  
...  

The problem of designing adaptive filters for nonlinear systems is faced in this work. The proposed evolution program combines the effectiveness of multimodel adaptive filters and the robustness of genetic algorithms (GAs). Specifically, a bank of different extended Kalman filters is implemented. Then, the a posteriori probability that a specific model of the bank of conditional models is the true one can be used as a GA fitness function. The superiority of the algorithm is that it evolves concurrently the models’ population with initial conditions. Thus, this procedure alleviates extended Kalman filter sensitivity in initial conditions, by estimating the best values. In addition to this, adaptive implementation is proposed that relieves the disadvantage of time-consuming GA implementation. Finally, a variety of defined crossover and mutation operators is investigated in order to accelerate the algorithm’s convergence.

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
S. Salcedo-Sanz ◽  
J. Del Ser ◽  
Z. W. Geem

This paper presents a novel fuzzy clustering technique based on grouping genetic algorithms (GGAs), which are a class of evolutionary algorithms especially modified to tackle grouping problems. Our approach hinges on a GGA devised for fuzzy clustering by means of a novel encoding of individuals (containing elements and clusters sections), a new fitness function (a superior modification of the Davies Bouldin index), specially tailored crossover and mutation operators, and the use of a scheme based on a local search and a parallelization process, inspired from an island-based model of evolution. The overall performance of our approach has been assessed over a number of synthetic and real fuzzy clustering problems with different objective functions and distance measures, from which it is concluded that the proposed approach shows excellent performance in all cases.


Geophysics ◽  
1991 ◽  
Vol 56 (11) ◽  
pp. 1794-1810 ◽  
Author(s):  
Paul L. Stoffa ◽  
Mrinal K. Sen

Seismic waveform inversion is one of many geophysical problems which can be identified as a nonlinear multiparameter optimization problem. Methods based on local linearization fail if the starting model is too far from the true model. We have investigated the applicability of “Genetic Algorithms” (GA) to the inversion of plane‐wave seismograms. Like simulated annealing, genetic algorithms use a random walk in model space and a transition probability rule to help guide their search. However, unlike a single simulated annealing run, the genetic algorithms search from a randomly chosen population of models (strings) and work with a binary coding of the model parameter set. Unlike a pure random search, such as in a “Monte Carlo” method, the search used in genetic algorithms is not directionless. Genetic algorithms essentially consist of three operations, selection, crossover, and mutation, which involve random number generation, string copies, and some partial string exchanges. The choice of the initial population, the probabilities of crossover and mutation are crucial for the practical implementation of the algorithm. We investigated the effects of these parameters in the inversion of plane‐wave seismograms in which a normalized crosscorrelation function was used as the objective or fitness function (E). We also introduce the concept of “update” probability to control the influence of past generations. The combination of a low value of mutation probability (∼0.01), a moderate value of the crossover probability (∼0.6) and a high value of update probability (∼0.9) are found to be optimal for the convergence of the algorithm. Further, we show that concepts from simulated annealing can be used effectively for the stretching of the fitness function which helps in the convergence of the algorithm. Thus, we propose to use exp (E/T) rather than E as the fitness function, where T (analogous to temperature in simulated annealing) is a properly chosen parameter which can change slowly with each generation. Also, by repeating the GA optimization procedure several times with different randomly chosen initial model populations, we derive “a very good subset” of models from the entire model space and calculate the a posteriori probability density σ(m) ∝ exp (E(m)/T). The σ(m) ’s are then used to calculate a “mean” model, which is found to be close to the true model.


2021 ◽  
Vol 2074 (1) ◽  
pp. 012037
Author(s):  
Ying Shi

Abstract At present, Bayesian networks lack consistent algorithms that support structure establishment, parameter learning, and knowledge reasoning, making it impossible to connect knowledge establishment and application processes. In view of this situation, by designing a genetic algorithm coding method suitable for Bayesian network learning, crossover and mutation operators with adjustment strategies, the fitness function for reasoning error feedback can be carried out. Experimental results show that the new algorithm not only simultaneously optimizes the network structure and parameters, but also can adaptively learn and correct inference errors, and has a more satisfactory knowledge inference accuracy rate.


2020 ◽  
Vol 15 (4) ◽  
pp. 287-299
Author(s):  
Jie Zhang ◽  
Junhong Feng ◽  
Fang-Xiang Wu

Background: : The brain networks can provide us an effective way to analyze brain function and brain disease detection. In brain networks, there exist some import neural unit modules, which contain meaningful biological insights. Objective:: Therefore, we need to find the optimal neural unit modules effectively and efficiently. Method:: In this study, we propose a novel algorithm to find community modules of brain networks by combining Neighbor Index and Discrete Particle Swarm Optimization (DPSO) with dynamic crossover, abbreviated as NIDPSO. The differences between this study and the existing ones lie in that NIDPSO is proposed first to find community modules of brain networks, and dose not need to predefine and preestimate the number of communities in advance. Results: : We generate a neighbor index table to alleviate and eliminate ineffective searches and design a novel coding by which we can determine the community without computing the distances amongst vertices in brain networks. Furthermore, dynamic crossover and mutation operators are designed to modify NIDPSO so as to alleviate the drawback of premature convergence in DPSO. Conclusion: The numerical results performing on several resting-state functional MRI brain networks demonstrate that NIDPSO outperforms or is comparable with other competing methods in terms of modularity, coverage and conductance metrics.


2011 ◽  
Vol 10 (02) ◽  
pp. 373-406 ◽  
Author(s):  
ABDEL-RAHMAN HEDAR ◽  
EMAD MABROUK ◽  
MASAO FUKUSHIMA

Since the first appearance of the Genetic Programming (GP) algorithm, extensive theoretical and application studies on it have been conducted. Nowadays, the GP algorithm is considered one of the most important tools in Artificial Intelligence (AI). Nevertheless, several questions have been raised about the complexity of the GP algorithm and the disruption effect of the crossover and mutation operators. In this paper, the Tabu Programming (TP) algorithm is proposed to employ the search strategy of the classical Tabu Search algorithm with the tree data structure. Moreover, the TP algorithm exploits a set of local search procedures over a tree space in order to mitigate the drawbacks of the crossover and mutation operators. Extensive numerical experiments are performed to study the performance of the proposed algorithm for a set of benchmark problems. The results of those experiments show that the TP algorithm compares favorably to recent versions of the GP algorithm in terms of computational efforts and the rate of success. Finally, we present a comprehensive framework called Meta-Heuristics Programming (MHP) as general machine learning tools.


2014 ◽  
Vol 716-717 ◽  
pp. 391-394
Author(s):  
Li Mei Guo ◽  
Ai Min Xiao

in architectural decoration process, pressure-bearing capacity test is the foundation of design, and is very important. To this end, a pressure-bearing capacity test method in architectural decoration design is proposed based on improved genetic algorithm. The selection, crossover and mutation operators in genetic algorithm are improved respectively. Using its fast convergence characteristics eliminate the pressure movement in the calculation process. The abnormal area of pressure-bearing existed in buildings which can ensure to be tested is added, to obtain accurate distribution information of the abnormal area of pressure-bearing. Simulation results show that the improved genetic algorithm has good convergence, can accurately test the pressure-bearing capacity in architectural decoration.


Author(s):  
Leila Taghizadeh ◽  
Ahmad Karimi ◽  
Clemens Heitzinger

AbstractThe main goal of this paper is to develop the forward and inverse modeling of the Coronavirus (COVID-19) pandemic using novel computational methodologies in order to accurately estimate and predict the pandemic. This leads to governmental decisions support in implementing effective protective measures and prevention of new outbreaks. To this end, we use the logistic equation and the SIR system of ordinary differential equations to model the spread of the COVID-19 pandemic. For the inverse modeling, we propose Bayesian inversion techniques, which are robust and reliable approaches, in order to estimate the unknown parameters of the epidemiological models. We use an adaptive Markov-chain Monte-Carlo (MCMC) algorithm for the estimation of a posteriori probability distribution and confidence intervals for the unknown model parameters as well as for the reproduction number. Furthermore, we present a fatality analysis for COVID-19 in Austria, which is also of importance for governmental protective decision making. We perform our analyses on the publicly available data for Austria to estimate the main epidemiological model parameters and to study the effectiveness of the protective measures by the Austrian government. The estimated parameters and the analysis of fatalities provide useful information for decision makers and makes it possible to perform more realistic forecasts of future outbreaks.


Sign in / Sign up

Export Citation Format

Share Document