parameter learning
Recently Published Documents


TOTAL DOCUMENTS

314
(FIVE YEARS 85)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 22 (3) ◽  
pp. 1-24
Author(s):  
Yizhang Jiang ◽  
Xiaoqing Gu ◽  
Lei Hua ◽  
Kang Li ◽  
Yuwen Tao ◽  
...  

Artificial intelligence– (AI) based fog/edge computing has become a promising paradigm for infectious disease. Various AI algorithms are embedded in cooperative fog/edge devices to construct medical Internet of Things environments, infectious disease forecast systems, smart health, and so on. However, these systems are usually done in isolation, which is called single-task learning. They do not consider the correlation and relationship between multiple/different tasks, so some common information in the model parameters or data characteristics is lost. In this study, each data center in fog/edge computing is considered as a task in the multi-task learning framework. In such a learning framework, a multi-task weighted Takagi-Sugeno-Kang (TSK) fuzzy system, called MW-TSKFS, is developed to forecast the trend of Coronavirus disease 2019 (COVID-19). MW-TSKFS provides a multi-task learning strategy for both antecedent and consequent parameters of fuzzy rules. First, a multi-task weighted fuzzy c-means clustering algorithm is developed for antecedent parameter learning, which extracts the public information among all tasks and the private information of each task. By sharing the public cluster centroid and public membership matrix, the differences of commonality and individuality can be further exploited. For consequent parameter learning of MW-TSKFS, a multi-task collaborative learning mechanism is developed based on ε-insensitive criterion and L2 norm penalty term, which can enhance the generalization and forecasting ability of the proposed fuzzy system. The experimental results on the real COVID-19 time series show that the forecasting tend model based on multi-task the weighted TSK fuzzy system has a high application value.


Risks ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 228
Author(s):  
Karol Gellert ◽  
Erik Schlögl

This paper presents the construction of a particle filter, which incorporates elements inspired by genetic algorithms, in order to achieve accelerated adaptation of the estimated posterior distribution to changes in model parameters. Specifically, the filter is designed for the situation where the subsequent data in online sequential filtering does not match the model posterior filtered based on data up to a current point in time. The examples considered encompass parameter regime shifts and stochastic volatility. The filter adapts to regime shifts extremely rapidly and delivers a clear heuristic for distinguishing between regime shifts and stochastic volatility, even though the model dynamics assumed by the filter exhibit neither of those features.


2021 ◽  
pp. 1-26
Author(s):  
Dan Wang ◽  
Jie-Sheng Wang ◽  
Shao-Yan Wang ◽  
Cheng Xing ◽  
Xu-Dong Li

Aiming at predicting the purity of the extract and raffinate components in the simulated moving bed (SMB) chromatographic separation process, a soft-sensor modeling method was proposed by adoptig the hybrid learning algorithm based on an improved particle swarm optimization (PSO) algorithm and the least means squares (LMS) method to optimize the adaptive neural fuzzy inference system (ANFIS) parameters. The hybrid learning algorithm includes a premise parameter learning phase and a conclusion parameter learning phase. In the premise parameter learning stage, the input data space division of the SMB chromatographic separation process and the initialization of the premise parameters are realized based on the fuzzy C-means (FCM) clustering algorithm. Then, the improved PSO algorithm is used to calculate the excitation intensity and normalized excitation intensity of all the rules for each individual in the population. In the conclusion parameter learning phase, these linear parameters are identified by the LMS method. In order to improve population diversity and convergence accuracy, the population evolution rate function was defined. According to the relationship between population diversity, population fitness function and particle position change, a new adaptive population evolution particle swarm optimization (NAPEPSO) algorithm was proposed. The inertia weight is adaptively adjusted according to the evolution of the population and the change of the particle position, thereby improving the diversity of the particle swarm and the ability of the algorithm to jump out of the local optimal solution. The simulation results show that the proposed soft-sensor model can effectively predict the key economic and technical indicators of the SMB chromatographic separation process so as to meet the real-time and efficient operation of the SMB chromatographic separation process.


2021 ◽  
Vol 2021 (1) ◽  
pp. 1054-1064
Author(s):  
Salwa Rizqina Putri ◽  
Thosan Girisona Suganda ◽  
Setia Pramana

Untuk mendukung pertumbuhan ekonomi hijau Indonesia, diperlukan analisis lebih lanjut terkait aktivitas ekonomi di masa pandemi dan keterkaitannya dengan kondisi lingkungan. Penelitian ini bertujuan untuk menerapkan pendekatan Bayesian Network dalam memodelkan kondisi ekonomi hijau Indonesia di masa pandemi berdasarkan variabel-variabel yang disinyalir dapat berpengaruh seperti aktivitas ekonomi, kualitas udara, tingkat mobilitas penduduk, dan kasus positif COVID-19 yang diperoleh melalui big data. Model Bayesian Network yang dikonstruksi secara manual dengan algoritma Maximum Spanning Tree dipilih sebagai model terbaik dengan rata-rata akurasi 5-cross validation dalam memprediksi empat kelas PDRB sebesar 0,83. Model terbaik yang dipilih menunjukkan bahwa kondisi ekonomi Indonesia di era pandemi secara langsung dipengaruhi oleh intensitas cahaya malam (NTL) yang menunjukkan aktivitas ekonomi, kualitas udara (AQI), dan kasus positif COVID-19. Analisis parameter learning menunjukkan bahwa pertumbuhan ekonomi provinsi-provinsi Indonesia masih cenderung belum sejalan dengan terpeliharanya kualitas udara sehingga usaha untuk mencapai kondisi ekonomi hijau masih harus ditingkatkan.


2021 ◽  
Vol 2074 (1) ◽  
pp. 012037
Author(s):  
Ying Shi

Abstract At present, Bayesian networks lack consistent algorithms that support structure establishment, parameter learning, and knowledge reasoning, making it impossible to connect knowledge establishment and application processes. In view of this situation, by designing a genetic algorithm coding method suitable for Bayesian network learning, crossover and mutation operators with adjustment strategies, the fitness function for reasoning error feedback can be carried out. Experimental results show that the new algorithm not only simultaneously optimizes the network structure and parameters, but also can adaptively learn and correct inference errors, and has a more satisfactory knowledge inference accuracy rate.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wen-Ping Tsai ◽  
Dapeng Feng ◽  
Ming Pan ◽  
Hylke Beck ◽  
Kathryn Lawson ◽  
...  

AbstractThe behaviors and skills of models in many geosciences (e.g., hydrology and ecosystem sciences) strongly depend on spatially-varying parameters that need calibration. A well-calibrated model can reasonably propagate information from observations to unobserved variables via model physics, but traditional calibration is highly inefficient and results in non-unique solutions. Here we propose a novel differentiable parameter learning (dPL) framework that efficiently learns a global mapping between inputs (and optionally responses) and parameters. Crucially, dPL exhibits beneficial scaling curves not previously demonstrated to geoscientists: as training data increases, dPL achieves better performance, more physical coherence, and better generalizability (across space and uncalibrated variables), all with orders-of-magnitude lower computational cost. We demonstrate examples that learned from soil moisture and streamflow, where dPL drastically outperformed existing evolutionary and regionalization methods, or required only ~12.5% of the training data to achieve similar performance. The generic scheme promotes the integration of deep learning and process-based models, without mandating reimplementation.


Author(s):  
Di Zhang ◽  
Yichen Zhou ◽  
Jiaqi Zhao ◽  
Yong Zhou

The appropriate setting of hyperparameter is a key factor to determine the performance of the deep learning model. Efficient hyperparametric optimization algorithm can not only improve the efficiency and speed of model hyperparametric optimization, but also reduce the application threshold of deep learning model. Therefore, we propose a parameter learning algorithm-based co-evolutionary for remote sensing scene classification. First, a co-evolution framework is proposed to optimize the optimizer’s hyperparameters and weight parameters of the convolutional neural networks (CNNs) simultaneously. Second, with the strategy of co-evolution with two populations, the hyperparameters can learn within the population and the weights of CNN can be updated by utilizing information between the populations. Finally, the parallel computing mechanism is adapted to speed up the learning process, as the two populations can evolve simultaneously. Extensive experiments on three public datasets demonstrate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document