Barrage Text Classification with Improved Active Learning and CNN

Author(s):  
Ningjia Qiu ◽  
◽  
Lin Cong ◽  
Sicheng Zhou ◽  
Peng Wang

Traditional convolutional neural networks (CNNs) use a pooling layer to reduce the dimensionality of texts, but lose semantic information. To solve this problem, this paper proposes a convolutional neural network model based on singular value decomposition algorithm (SVD-CNN). First, an improved density-based center point clustering active learning sampling algorithm (DBC-AL) is used to obtain a high-quality training set at a low labelling cost. Second, the method uses the singular value decomposition algorithm for feature extraction and dimensionality reduction instead of a pooling layer, fuses the dimensionality reduction matrix, and completes the barrage text classification task. Finally, the partial sampling gradient descent algorithm (PSGD) is applied to optimize the model parameters, which accelerates the convergence speed of the model while ensuring stability of the model training. To verify the effectiveness of the improved algorithm, several barrage datasets were used to compare the proposed model and common text classification models. The experimental results show that the improved algorithm preserves the semantic features of the text more successfully, ensures the stability of the training process, and improves the convergence speed of the model. Further, the model’s classification performance on different barrage texts is superior to traditional algorithms.

2019 ◽  
Vol 22 (12) ◽  
pp. 2687-2698 ◽  
Author(s):  
Zhen Chen ◽  
Lifeng Qin ◽  
Shunbo Zhao ◽  
Tommy HT Chan ◽  
Andy Nguyen

This article introduces and evaluates the piecewise polynomial truncated singular value decomposition algorithm toward an effective use for moving force identification. Suffering from numerical non-uniqueness and noise disturbance, the moving force identification is known to be associated with ill-posedness. An important method for solving this problem is the truncated singular value decomposition algorithm, but the truncated small singular values removed by truncated singular value decomposition may contain some useful information. The piecewise polynomial truncated singular value decomposition algorithm extracts the useful responses from truncated small singular values and superposes it into the solution of truncated singular value decomposition, which can be useful in moving force identification. In this article, a comprehensive numerical simulation is set up to evaluate piecewise polynomial truncated singular value decomposition, and compare this technique against truncated singular value decomposition and singular value decomposition. Numerically simulated data are processed to validate the novel method, which show that regularization matrix [Formula: see text] and truncating point [Formula: see text] are the two most important governing factors affecting identification accuracy and ill-posedness immunity of piecewise polynomial truncated singular value decomposition.


Sign in / Sign up

Export Citation Format

Share Document