Force Characteristics for Fine Deformation of CMC Touch Sensor and Estimation of Force Variance Using Hybrid Tactile Sensor System

2012 ◽  
Vol 24 (3) ◽  
pp. 423-429
Author(s):  
Takuya Kawamura ◽  
◽  
Ko Nejigane ◽  
Kazuo Tani ◽  
Hironao Yamada

Having previously proposed a hybrid tactile sensor system consisting of a Carbon Micro-Coil (CMC) touch sensor and a force sensor, the authors have been developing a method of measuring deformation of micrometer order, force variance of 10 gram order, and compression force when an object touches a sensor element and moves slightly. In this paper, to measure the force variance for deformation of several micrometers using the CMC touch sensor, the force characteristics of the CMC touch sensor are investigated. The CMC sensor element is made of silicon rubber containing CMCs several micrometers in diameter. It is considered that the sensor element constitutes an LCR circuit, and the CMC touch sensor, deformed mechanically, produces signals due to the modification of the circuit. In the experiment detailed in this paper, to clarify the characteristics of the CMC sensor with respect to the parameters of force and deformation, the outputs of the CMC sensor and the force sensor for deformation in the range of 1 to 9 µm are sampled. As a result, it is found that the force characteristics of the CMC touch sensor are almost linear in terms of force variance within the range of 0 to 1 N, regardless of a compression force of less than 3 N. Finally, to evaluate the performance of the sensor system, force variance for a slight movement of an object touching the sensor element is estimated in an experiment.

2021 ◽  
pp. 1-1
Author(s):  
Leticia Avellar ◽  
Gabriel Delgado ◽  
Eduardo Rocon ◽  
Carlos Marques ◽  
Anselmo Frizera ◽  
...  

Robotica ◽  
1983 ◽  
Vol 1 (4) ◽  
pp. 217-222 ◽  
Author(s):  
Gen-Ichiro Kinoshita

SUMMARYThe tactile sensor is constructed as a part of the finger of a parallel jaw hand; it is of the size of a finger and allows for a large displacement of the sensor element in response to force. The structure of the tactile sensor incorporates 20 successively and closely aligned elements, which allow for a 2.5 mm maximum displacement for each element. In the described experiments we present the capabilities of the tactile sensor. The tactile sensor has the functions of: 1) discriminating the shape of the partial surface of an object; and 2) tracing by finger on the surface along the profile of an object.


2017 ◽  
Vol 105 ◽  
pp. 857-863 ◽  
Author(s):  
Noriaki Matsubara ◽  
Shigeru Miyachi ◽  
Takashi Izumi ◽  
Hiroyuki Yamada ◽  
Naoki Marui ◽  
...  

2004 ◽  
Vol 112 (2-3) ◽  
pp. 278-285 ◽  
Author(s):  
Sadao Omata ◽  
Yoshinobu Murayama ◽  
Christos E. Constantinou

Author(s):  
W.S. McMath ◽  
S.K. Yeung ◽  
M.D. Colven ◽  
E.M. Petriu ◽  
C. Gal ◽  
...  

2013 ◽  
Vol 433 ◽  
pp. 012012
Author(s):  
T Kawamura ◽  
N Inaguma ◽  
Y Kakizaki ◽  
H Yamada ◽  
K Tani

Author(s):  
Simon S. Park ◽  
Y. Altintas

This paper presents a dynamically compensated Spindle Integrated Force Sensor (SIFS) system to measure cutting forces. Piezo-electric force sensors are integrated to the stationary spindle housing. The structural dynamic model between the cutting forces acting on the tool tip and the measured forces at the spindle housing is identified. The system is first calibrated to compensate the influence of spindle run-out and unbalance at different speeds. Using both the cutting force and acceleration sensor signals measured at the spindle housing, a Kalman Filter is designed to filter the influence of structural modes on the force measurements. The frequency bandwidth of the proposed sensor system is expanded from 300 Hz to about 800 Hz with the proposed sensing and the signal processing method.


Sign in / Sign up

Export Citation Format

Share Document