scholarly journals Forward-thinking design solutions for mechanical circulatory support: multifunctional hybrid continuous-flow ventricular assist device technology

2021 ◽  
Vol 10 (3) ◽  
pp. 383-385
Author(s):  
Amy Throckmorton ◽  
Ellen Garven ◽  
Matthew Hirschhorn ◽  
Steven Day ◽  
Randy Stevens ◽  
...  
Children ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 468
Author(s):  
Kyle D. Hope ◽  
Priya N. Bhat ◽  
William J. Dreyer ◽  
Barbara A. Elias ◽  
Jaime L. Jump ◽  
...  

Heart failure is a life-changing diagnosis for a child and their family. Pediatric patients with heart failure experience significant morbidity and frequent hospitalizations, and many require advanced therapies such as mechanical circulatory support and/or heart transplantation. Pediatric palliative care is an integral resource for the care of patients with heart failure along its continuum. This includes support during the grief of a new diagnosis in a child critically ill with decompensated heart failure, discussion of goals of care and the complexities of mechanical circulatory support, the pensive wait for heart transplantation, and symptom management and psychosocial support throughout the journey. In this article, we discuss the scope of pediatric palliative care in the realm of pediatric heart failure, ventricular assist device (VAD) support, and heart transplantation. We review the limited, albeit growing, literature in this field, with an added focus on difficult conversation and decision support surrounding re-transplantation, HF in young adults with congenital heart disease, the possibility of destination therapy VAD, and the grimmest decision of VAD de-activation.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Selim Bozkurt ◽  
Koray K. Safak

Dilated cardiomyopathy is the most common type of the heart failure which can be characterized by impaired ventricular contractility. Mechanical circulatory support devices were introduced into practice for the heart failure patients to bridge the time between the decision to transplant and the actual transplantation which is not sufficient due to the state of donor organ supply. In this study, the hemodynamic response of a cardiovascular system that includes a dilated cardiomyopathic heart under support of a newly developed continuous flow left ventricular assist device—Heart Turcica Axial—was evaluated employing computer simulations. For the evaluation, a numerical model which describes the pressure-flow rate relations of Heart Turcica Axial, a cardiovascular system model describing the healthy and pathological hemodynamics, and a baroreflex model regulating the heart rate were used. Heart Turcica Axial was operated between 8000 rpm and 11000 rpm speeds with 1000 rpm increments for assessing the pump performance and response of the cardiovascular system. The results also give an insight about the range of the possible operating speeds of Heart Turcica Axial in a clinical application. Based on the findings, operating speed of Heart Turcica Axial should be between 10000 rpm and 11000 rpm.


Sign in / Sign up

Export Citation Format

Share Document