scholarly journals AB085. Diagnosis of Prader-Willi syndrome using computer-aided facial dysmorphism analysis in Thai patients

2017 ◽  
Vol 5 (S2) ◽  
pp. AB085-AB085
Author(s):  
Thipwimol Tim-Aroon ◽  
Nantiya Mongkollarp ◽  
Waraphorn Khunin ◽  
Duangrurdee Wattanasirichaigoon
2021 ◽  
Author(s):  
Tzung-Chien Hsieh ◽  
Aviram Bar-Haim ◽  
Shahida Moosa ◽  
Nadja Ehmke ◽  
Karen W. Gripp ◽  
...  

AbstractThe majority of monogenic disorders cause craniofacial abnormalities with characteristic facial morphology. These disorders can be diagnosed more efficiently with the support of computer-aided next-generation phenotyping tools, such as DeepGestalt. These tools have learned to associate facial phenotypes with the underlying syndrome through training on thousands of patient photographs. However, this “supervised” approach means that diagnoses are only possible if they were part of the training set. To improve recognition of ultra-rare diseases, we created GestaltMatcher, which uses a deep convolutional neural network based on the DeepGestalt framework. We used photographs of 21,836 patients with 1,362 rare disorders to define a “Clinical Face Phenotype Space”. Distance between cases in the phenotype space defines syndromic similarity, allowing test patients to be matched to a molecular diagnosis even when the disorder was not included in the training set. Similarities among patients with previously unknown disease genes can also be detected. Therefore, in concert with mutation data, GestaltMatcher could accelerate the clinical diagnosis of patients with ultra-rare disorders and facial dysmorphism.


2021 ◽  
Author(s):  
Peter Krawitz ◽  
Tzung-Chien Hsieh ◽  
Aviram Bar-Haim ◽  
Shahida Moosa ◽  
Nadja Ehmke ◽  
...  

Abstract The majority of monogenic disorders cause craniofacial abnormalities with characteristic facial morphology. These disorders can be diagnosed more efficiently with the support of computer-aided next-generation phenotyping tools, such as DeepGestalt. These tools have learned to associate facial phenotypes with the underlying syndrome through training on thousands of patient photographs. However, this “supervised” approach means that diagnoses are only possible if they were part of the training set. To improve recognition of ultra-rare diseases, we created GestaltMatcher, which uses a deep convolutional neural network based on the DeepGestalt framework. We used photographs of 21,836 patients with 1,362 rare disorders to define a “Clinical Face Phenotype Space”. Distance between cases in the phenotype space defines syndromic similarity, allowing test patients to be matched to a molecular diagnosis even when the disorder was not included in the training set. Similarities among patients with previously unknown disease genes can also be detected. Therefore, in concert with mutation data, GestaltMatcher could accelerate the clinical diagnosis of patients with ultra-rare disorders and facial dysmorphism.


Author(s):  
Mark Ellisman ◽  
Maryann Martone ◽  
Gabriel Soto ◽  
Eleizer Masliah ◽  
David Hessler ◽  
...  

Structurally-oriented biologists examine cells, tissues, organelles and macromolecules in order to gain insight into cellular and molecular physiology by relating structure to function. The understanding of these structures can be greatly enhanced by the use of techniques for the visualization and quantitative analysis of three-dimensional structure. Three projects from current research activities will be presented in order to illustrate both the present capabilities of computer aided techniques as well as their limitations and future possibilities.The first project concerns the three-dimensional reconstruction of the neuritic plaques found in the brains of patients with Alzheimer's disease. We have developed a software package “Synu” for investigation of 3D data sets which has been used in conjunction with laser confocal light microscopy to study the structure of the neuritic plaque. Tissue sections of autopsy samples from patients with Alzheimer's disease were double-labeled for tau, a cytoskeletal marker for abnormal neurites, and synaptophysin, a marker of presynaptic terminals.


Author(s):  
Greg V. Martin ◽  
Ann L. Hubbard

The microtubule (MT) cytoskeleton is necessary for many of the polarized functions of hepatocytes. Among the functions dependent on the MT-based cytoskeleton are polarized secretion of proteins, delivery of endocytosed material to lysosomes, and transcytosis of integral plasma membrane (PM) proteins. Although microtubules have been shown to be crucial to the establishment and maintenance of functional and structural polarization in the hepatocyte, little is known about the architecture of the hepatocyte MT cytoskeleton in vivo, particularly with regard to its relationship to PM domains and membranous organelles. Using an in situ extraction technique that preserves both microtubules and cellular membranes, we have developed a protocol for immunofluorescent co-localization of cytoskeletal elements and integral membrane proteins within 20 µm cryosections of fixed rat liver. Computer-aided 3D reconstruction of multi-spectral confocal microscope images was used to visualize the spatial relationships among the MT cytoskeleton, PM domains and intracellular organelles.


1996 ◽  
Vol 71 (4) ◽  
pp. 187-212 ◽  
Author(s):  
Travis Thompson ◽  
Merlin Butler ◽  
William MacLean ◽  
Beth Joseph

Sign in / Sign up

Export Citation Format

Share Document