scholarly journals Computing First Zagreb index and F-index of New C-products of Graphs

2017 ◽  
Vol 2 (1) ◽  
pp. 285-298 ◽  
Author(s):  
B. Basavanagoud ◽  
Wei Gao ◽  
Shreekant Patil ◽  
Veena R. Desai ◽  
Keerthi G. Mirajkar ◽  
...  

AbstractFor a (molecular) graph, the first Zagreb index is equal to the sum of squares of the degrees of vertices, and the F-index is equal to the sum of cubes of the degrees of vertices. In this paper, we introduce sixty four new operations on graphs and study the first Zagreb index and F-index of the resulting graphs.

2016 ◽  
Vol 4 (2) ◽  
pp. 47 ◽  
Author(s):  
Sharmila Devi ◽  
V. Kaladevi

For a (molecular) graph, the first Zagreb index M1 is equal to the sum of squares of the degrees of vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices. Similarly, the hyper Zagreb index is defined as the sum of square of degree of vertices over all the edges.  In this paper, First we obtain the hyper Zagreb indices of some derived graphs and the generalized transformations graphs. Finally, the hyper Zagreb indices of double, extended double, thorn graph, subdivision vertex corona of graphs, Splice and link graphs are obtained.


2016 ◽  
Vol 24 (1) ◽  
pp. 153-176 ◽  
Author(s):  
Kinkar Ch. Das ◽  
Nihat Akgunes ◽  
Muge Togan ◽  
Aysun Yurttas ◽  
I. Naci Cangul ◽  
...  

AbstractFor a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as, where dG(vi) is the degree of vertex vi in G. Recently Xu et al. introduced two graphical invariantsandnamed as first multiplicative Zagreb coindex and second multiplicative Zagreb coindex, respectively. The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G, that is, NK(G) =. The irregularity index t(G) of G is defined as the number of distinct terms in the degree sequence of G. In this paper, we give some lower and upper bounds on the first Zagreb index M1(G) of graphs and trees in terms of number of vertices, irregularity index, maxi- mum degree, and characterize the extremal graphs. Moreover, we obtain some lower and upper bounds on the (first and second) multiplicative Zagreb coindices of graphs and characterize the extremal graphs. Finally, we present some relations between first Zagreb index and Narumi-Katayama index, and (first and second) multiplicative Zagreb index and coindices of graphs.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xu Li ◽  
Maqsood Ahmad ◽  
Muhammad Javaid ◽  
Muhammad Saeed ◽  
Jia-Bao Liu

A topological invariant is a numerical parameter associated with molecular graph and plays an imperative role in the study and analysis of quantitative structure activity/property relationships (QSAR/QSPR). The correlation between the entire π-electron energy and the structure of a molecular graph was explored and understood by the first Zagreb index. Recently, Liu et al. (2019) calculated the first general Zagreb index of the F-sum graphs. In the same paper, they also proposed the open problem to compute the general Randić index RαΓ=∑uv∈EΓdΓu×dΓvα of the F-sum graphs, where α∈R and dΓu denote the valency of the vertex u in the molecular graph Γ. Aim of this paper is to compute the lower and upper bounds of the general Randić index for the F-sum graphs when α∈N. We present numerous examples to support and check the reliability as well as validity of our bounds. Furthermore, the results acquired are the generalization of the results offered by Deng et al. (2016), who studied the general Randić index for exactly α=1.


Author(s):  
Shreekant Patil ◽  
Bommanahal Basavanagoud

The first Zagreb index of a graph [Formula: see text] is the sum of squares of the degrees of the vertices of [Formula: see text]. In this paper, we introduce generalized four new sums of graphs and study the first Zagreb index and coindex of the resulting graphs. In addition, we give the short proof for the earlier results of Deng, Sarala, Ayyaswamy and Balachandran [Appl. Math. Comput. 275 (2016) 422–431] on the first Zagreb index of four operations on graphs by different approach.


Filomat ◽  
2012 ◽  
Vol 26 (6) ◽  
pp. 1189-1200 ◽  
Author(s):  
Shuchao Li ◽  
Huangxu Yang ◽  
Qin Zhao

For a (molecular) graph, the first Zagreb index M1 is equal to the sum of squares of its vertex degrees, and the second Zagreb index M2 is equal to the sum of products of degrees of pairs of adjacent vertices. A connected graph G is a cactus if any two of its cycles have at most one common vertex. In this paper, we investigate the first and the second Zagreb indices of cacti with k pendant vertices. We determine sharp bounds for M1 -, M2 -values of n-vertex cacti with k pendant vertices. As a consequence, we determine the n-vertex cacti with maximal Zagreb indices and we also determine the cactus with a perfect matching having maximal Zagreb indices.


2014 ◽  
Vol 45 ◽  
pp. 147-151 ◽  
Author(s):  
Hossein Shabani ◽  
Reza Kahkeshani

2018 ◽  
Vol 37 (6-7) ◽  
pp. 1800008 ◽  
Author(s):  
Akbar Ali ◽  
Nenad Trinajstić

2021 ◽  
Vol 4 (2) ◽  
pp. 11-16
Author(s):  
Ivan Gutman ◽  
◽  
Veerabhadrappa R. Kulli ◽  

A novel vertex-degree-based topological invariant, called Nirmala index, was recently put forward, defined as the sum of the terms \(\sqrt{d(u)+d(v)}\) over all edges \(uv\) of the underlying graph, where \(d(u)\) is the degree of the vertex \(u\). Based on this index, we now introduce the respective ``Nirmala matrix'', and consider its spectrum and energy. An interesting finding is that some spectral properties of the Nirmala matrix, including its energy, are related to the first Zagreb index.


Author(s):  
Jibonjyoti Buragohain ◽  
A. Bharali

The Zagreb indices are the oldest among all degree-based topological indices. For a connected graph G, the first Zagreb index M1(G) is the sum of the term dG(u)+dG(v) corresponding to each edge uv in G, that is, M1 , where dG(u) is degree of the vertex u in G. In this chapter, the authors propose a weighted first Zagreb index and calculate its values for some standard graphs. Also, the authors study its correlations with various physico-chemical properties of octane isomers. It is found that this novel index has strong correlation with acentric factor and entropy of octane isomers as compared to other existing topological indices.


2009 ◽  
Vol 3 (2) ◽  
pp. 371-378 ◽  
Author(s):  
Bo Zhou ◽  
Ivan Gutman

Let G be a graph with n vertices and let ?1, ?2, . . . , ?n be its Laplacian eigenvalues. In some recent works a quantity called Laplacian Estrada index was considered, defined as LEE(G)?n1 e?i. We now establish some further properties of LEE, mainly upper and lower bounds in terms of the number of vertices, number of edges, and the first Zagreb index.


Sign in / Sign up

Export Citation Format

Share Document