3D-Printed Surgical Guiding System for Double Derotational Osteotomy in Congenital Torsional Limb Deformity

2021 ◽  
Vol 11 (1) ◽  
pp. e20.00468-e20.00468
Author(s):  
Luigi Sabatini ◽  
Giulia Nicolaci ◽  
Matteo Giachino ◽  
Salvatore Risitano ◽  
Andrea Pautasso ◽  
...  
2019 ◽  
Vol 48 (2) ◽  
pp. 030006051985428 ◽  
Author(s):  
Yi-Ping Wei ◽  
Yu-Cheng Lai ◽  
Wei-Ning Chang

Management of pediatric septic coxarthritis and osteomyelitis of the femur is challenging, and the sequelae of multiplanar hip joint deformity with instability are difficult to reconstruct. The inadequacy of a suitable device for fixing small bones during pediatric osteotomy is a hindrance to the correction of subluxated hip joints and deformed femurs in children. Two-dimensional axial images and three-dimensional (3D) virtual models representing the patient’s individual anatomy are usually reserved for more complex cases of limb deformity. 3D printing technology can be used for preoperative planning of complex pediatric orthopedic surgery. However, there is a paucity of literature reports regarding the application of 3D-printed bone models for pediatric post-osteomyelitis deformity. We herein present a case of a 4-year-old boy who underwent treatment for post-osteomyelitis deformity. We performed corrective surgery with Pemberton osteotomy of the right hip, multilevel varus derotation osteotomy of the right femur, and immobilization with a hip spica cast. A 3D-printed bone model of this patient was used to simulate the surgery, determine the proper osteotomy sites, and choose the appropriate implant for the osteotomized bone. A satisfactory clinical outcome was achieved.


Author(s):  
G. Caiti ◽  
J. G. G. Dobbe ◽  
S. D. Strackee ◽  
M. H. M. van Doesburg ◽  
G. J. Strijkers ◽  
...  

Abstract Purpose In corrective osteotomy of the distal radius, patient-specific 3D printed surgical guides or optical navigation systems are often used to navigate the surgical saw. The purpose of this cadaver study is to present and evaluate a novel cast-based guiding system to transfer the virtually planned corrective osteotomy of the distal radius. Methods We developed a cast-based guiding system composed of a cast featuring two drilling slots as well as an external cutting guide that was used to orient the surgical saw for osteotomy in the preoperatively planned position. The device was tested on five cadaver specimens with different body fat percentages. A repositioning experiment was performed to assess the precision of replacing an arm in the cast. Accuracy and precision of drilling and cutting using the proposed cast-based guiding system were evaluated using the same five cadaver arms. CT imaging was used to quantify the positioning errors in 3D. Results For normal-weight cadavers, the resulting total translation and rotation repositioning errors were ± 2 mm and ± 2°. Across the five performed surgeries, the median accuracy and Inter Quartile Ranges (IQR) of pre-operatively planned drilling trajectories were 4.3° (IQR = 2.4°) and 3.1 mm (IQR = 4.9 mm). Median rotational and translational errors in transferring the pre-operatively planned osteotomy plane were and 3.9° (IQR = 4.5°) and 2.6 mm (IQR = 4.2 mm), respectively. Conclusion For normal weight arm specimens, navigation of corrective osteotomy via a cast-based guide resulted in transfer errors comparable to those using invasive surgical guides. The promising positioning capabilities justify further investigating whether the method could ultimately be used in a clinical setting, which could especially be of interest when used with less invasive osteosynthesis material.


2018 ◽  
Vol 38 (6) ◽  
pp. 1178-1183 ◽  
Author(s):  
João P.A. Bordelo ◽  
Maria I.R. Dias ◽  
Luís M.M.L. Cardoso ◽  
João M.F. Requicha ◽  
Carlos A.A. Viegas ◽  
...  

ABSTRACT: An 8 month-old, 10 kg male Azawakh dog was presented due to worsening forelimb gait and exercise intolerance. The right forelimb presented gross angular limb deformity with carpal valgus and radial procurvatum. Surgical planning based on radiographs allowed calculation of the centers of rotation and angularity (CORAs). The computer tomography data were used to generate 3D reconstructions of the antebrachium to aid the detection of the orthopaedic problems. With proper imaging software, the nature of the deformity and its degree were quantified using a previously unreported method based on the CORAs as a 3D printed model of anatomical area of interest. This 3D printed model was used by the surgeon to simulate the surgery with all orthopaedic steps, which included a partial ulna osteotomy and a double cuneiform osteotomy of the radius performed at the level of CORAs and stabilized with bone plates and screws. After 7 weeks, radiographs revealed bone union. At 8 months after surgery the animal presented a complete recovery of the involved forelimb. CORAs method combined with computed tomography and 3D model was useful to plan and simulate surgical procedures, including the corrective surgery of forelimb deformities in a dog which improved the surgical efficiency comparatively to the conventional pre-operative study.


2018 ◽  
Vol 6 (6) ◽  
pp. 232596711877566 ◽  
Author(s):  
Florian B. Imhoff ◽  
Knut Beitzel ◽  
Philip Zakko ◽  
Elifho Obopilwe ◽  
Andreas Voss ◽  
...  

Background: Derotational osteotomy of the distal femur allows the anatomic treatment of patellofemoral maltracking due to increased femoral antetorsion. However, such rotational osteotomy procedures have a high potential of intended/unintended changes of frontal alignment. Purpose/Hypothesis: The purpose of this study was to perform derotational osteotomy of the distal femur and to demonstrate the utility of a novel trigonometric approach to address 3-dimensional (3D) changes on 2-dimensional imaging (axial computed tomography [CT] and frontal-plane radiography). The hypothesis was that 1-step single-cut osteotomy can simultaneously correct torsion and frontal alignment based on preoperatively calculated cutting angles. Study Design: Controlled laboratory study. Methods: Eight human cadaveric whole legs (4 lower limb torsos) underwent derotational osteotomy of the distal femur of 20°. A straight leg axis, determined as a mechanical femorotibial angle (mFTA) of 0°, was chosen as a goal for postoperative frontal alignment. The inclination of the cutting angle from the lateral view was calculated individually for each cadaveric leg and was represented by a simple 3D-printed cutting guide for surgery. Specimens underwent CT for the measurement of torsion, while the frontal leg axis was determined on an upright radiograph preoperatively and postoperatively. Preoperative and postoperative angles were compared with the mathematical prediction model. Results: The preoperative mFTA ranged from –3.9° (valgus) to +3.4° (varus) (mean, –0.2° ± 2.6°). A postoperative mean mFTA of 0.37° ± 0.69° (95% CI, –0.22° to 0.95°) was achieved ( P = .01). Derotation showed a mean of 19.1° ± 2.1° (95% CI, 17.3°-20.8°). The oblique cutting plane for the correction of valgus legs showed a mean of 5.9° ± 6.8° and, for the correction of varus legs, a mean of –10.0° ± 4.5° projected on the perpendicular plane to the virtual anatomic shaft axis from the sagittal view. Conclusion: Single-cut distal femoral osteotomy can be performed to simultaneously address rotational as well as frontal alignment using a preoperatively defined oblique cut, as determined by the presented reproducible calculation model. Clinical Relevance: This study adds important knowledge to the technique of derotational osteotomy. This approach provides an individual, oblique single cut for the correction of torsion and frontal axis within a clinically insignificant margin. Simplified tables for calculation and a surgical reference make this model reproducible and safe.


2016 ◽  
Vol 77 (S 02) ◽  
Author(s):  
Hassan Othman ◽  
Sam Evans ◽  
Daniel Morris ◽  
Saty Bhatia ◽  
Caroline Hayhurst

2019 ◽  
Author(s):  
Avital Perry ◽  
Soliman Oushy ◽  
Lucas Carlstrom ◽  
Christopher Graffeo ◽  
David Daniels ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document