tibial fracture
Recently Published Documents


TOTAL DOCUMENTS

650
(FIVE YEARS 161)

H-INDEX

33
(FIVE YEARS 5)

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Dejan Blažević ◽  
Janoš Kodvanj ◽  
Petra Adamović ◽  
Dinko Vidović ◽  
Zlatko Trobonjača ◽  
...  

Abstract Background Good clinical outcomes for locking plates as an external fixator to treat tibial fractures have been reported. However, external locking plate fixation is still generally rarely performed. This study aimed to compare the stability of an external locking plate fixator with that of a conventional external fixator for extraarticular proximal tibial fractures using finite element analysis. Methods Three models were constructed: (1) external locking plate fixation of proximal tibial fracture with lateral proximal tibial locking plate and 5-mm screws (ELP), (2) conventional external fixation of proximal tibial fracture with an 11-mm rod and 5-mm Schanz screws (EF-11), and (3) conventional external fixation of a proximal tibial fracture with a 7-mm rod and 5-mm Schanz screws (EF-7). The stress distribution, displacement at the fracture gap, and stiffness of the three finite element models at 30-, 40-, 50-, and 60-mm plate–rod offsets from the lateral surface of the lateral condyle of the tibia were determined. Results The conventional external fixator showed higher stiffness than the external locking plate fixator. In all models, the stiffness decreased as the distance of the plate–rod from the bone surface increased. The maximum stiffness was 121.06 N/mm in the EF-11 model with 30-mm tibia–rod offset. In the EF-7 model group, the maximum stiffness was 40.00 N/mm in the model with 30-mm tibia–rod offset. In the ELP model group, the maximum stiffness was 35.79 N/mm in the model with 30-mm tibia–plate offset. Conclusions Finite element analysis indicated that external locking plate fixation is more flexible than conventional external fixation and can influence secondary bone healing. External locking plate fixation requires the placement of the plate as close as possible to the skin, which allows for a low-profile design because the increased distance from the plate to the bone can be too flexible for bone healing. Further experimental mechanical model tests are necessary to validate these finite element models, and further biological analysis is necessary to evaluate the effect of external locking plate fixation on fracture healing.


2022 ◽  
pp. 494-505
Author(s):  
Lane A. Wallett ◽  
Cathy Beck ◽  
Helen M.S. Davies
Keyword(s):  

Morphologia ◽  
2021 ◽  
Vol 15 (3) ◽  
pp. 57-61
Author(s):  
O.A. Hryhorieva ◽  
Yu.Yu. Abrosimov ◽  
V.V. Chornyi

Background. In Ukraine, there has recently been an increase in the number of limb bone fractures among the population, in particular, due to increase in the number of elderly people, which is associated with the development of age-related osteoporosis and fragility of bones. Therefore, the use of artificial implants in traumatology is becoming increasingly important. The search for new bioinert and biodegradable materials, that are capable of providing rapid fracture consolidation and do not require repeated surgical intervention, continues. Objective. To elaborate a model for the research of using carbon-carbon composite nail for intramedullary osteosynthesis in laboratory rats with fractures of femur and tibia in norm and with experimental osteoporosis. Methods. The work investigated the lower limbs of 6 groups of Wistar rats. The first part of the study involved 4 groups of rats with modeled tibial fracture with subsequent osteosynthesis in norm and with experimental osteoporosis. The second part of the research included two groups of laboratory rats with modeled femur fracture. In both parts we used metal injection needle, as well as carbon-carbon composite nail for osteosynthesis. Results. All animals underwent surgery well, stepped on the injured limb. X-ray examination after the osteosynthesis demonstrated satisfactory reposition of the fragments. One month after modeled fracture in rats with experimental osteoporosis a violation of the normal consolidation of the fracture was observed, especially in the group where carbon-carbon composite nails were used for osteosynthesis. Further, until the 180th day after the surgery there were no peculiarities, function of the limbs was restored, mainly without expressed angular deformities. Conclusion. The above mentioned model was successfully elaborated for the research of using carbon-carbon composite nail for intramedullary osteosynthesis in laboratory rats with fractures of femur and tibia in norm and with experimental osteoporosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hongwei Li ◽  
Dichen Li ◽  
Feng Qiao ◽  
Lei Tang ◽  
Qi Han

External fixation is a long-standing but well-established method, which has been widely used for the treatment of fractures. To obtain the maximum benefit from the mechanical stimulus, the stiffness of the external fixator should be adjusted properly throughout the treatment phase. Nevertheless, the lack of a valid dynamic adjustable fixation device impedes this possibility. Based on the stiffness adjustment tolerance of the healing callus, this paper proposes an active-dynamic stiffness adjustable external fixator design method to meet stiffness requirements at different stages of the tibial fracture healing process. A novel external fixator with an adjustable stiffness configuration was designed, and the finite element method was used to simulate the stress distribution between fixator and fracture gap. The stiffness adjustment tolerance was determined based on previous studies. According to this tolerance, the optimal block structure dismantling sequence was sought and the corresponding stiffness was calculated through topology optimization for the entire external fixator model. The appropriate amount of variable stiffness at the fracture gap was applied by dismantling the configuration of the block structure external fixator during the healing process. A novel patient-specific adjustable stiffness external fixator for mechanically stimulated tibial fracture reduction and therapy was proposed. This enables surgeons to tailor the construction of the external fixator frame to the clinical needs of each patient. The presented dismantling approach of the block structure to produce conformable stiffness provides a new clinical treatment strategy for tibial fractures.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sara V. Maurer ◽  
Cuicui Kong ◽  
Niccolò Terrando ◽  
Christina L. Williams

Perioperative neurocognitive disorders (PNDs) are a common complication following procedures such as orthopedic surgery. Using a mouse model of tibial fracture and repair surgery, we have previously shown an increase in neuroinflammation and hippocampal-dependent cognitive deficits. These changes were ameliorated with the addition of a cholinergic agonist. Here, we sought to examine the effects of a high-choline diet for 3 weeks prior to tibial fracture surgery. We evaluated memory using novel object recognition (NOR) as well as young neurons and glial cell morphology at 1 day and 2 weeks post-surgery. At both time points, tibial fracture impaired NOR performance, and dietary choline rescued these impairments. Astrocytic density and hilar granule cells increased 1 day after tibial fracture, and these increases were partially blunted by dietary choline. An increase in young neurons in the subgranular zone of the dentate gyrus was found 2 weeks after tibial fracture. This increase was partially blunted by choline supplementation. This suggests that shortly after tibial fracture, hippocampal reorganization is a possible mechanism for acute impaired memory. These findings together suggest that non-pharmaceutical approaches, such as pre-surgical dietary intervention with choline, may be able to prevent PNDs.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Dafeng Wang ◽  
Jie Yang ◽  
Xiaomin Dong ◽  
Shengtuo Zhou ◽  
Chaonan Wang

Background. Few studies exist on the predictive factors of tibial fractures with hidden posterior ankle fractures. Objective. To study the incidence and predictive factors of tibial fractures with occult posterior ankle fractures. Methods. Tibial fracture patients were prospectively selected who were admitted to our hospital from January 2016 to May 2021 and their general clinical data, X-ray images, CT images, and other imaging data were collected and then divided them into posterior malleolus fracture group and nonposterior malleolus fracture group according to the presence or absence of posterior malleolus fractures. Multivariate regression analysis and receiver operating curves (ROC) were performed to analyze the influencing factors of tibial fracture with occult posterior ankle fracture. Results. CT showed that 25 (13.44%) patients had occult posterior ankle fractures among 186 patients with tibial fracture. There was no significant difference in gender, age, and locations of tibial fracture between the two groups ( P > 0.05 ). There were statistical differences in the types, locations, and lengths of patients with tibial fracture but without posterior malleolus fractures. The length of the tibia fracture group was significantly lower than the tibia with posterior ankle fracture group ( P < 0.05 ). Logistics regression analysis showed that tibial fracture with occult posterior ankle fracture was not significantly correlated with gender, age, and location of tibial fracture ( P > 0.05 ), but was significantly correlated with tibial fracture type, location, and length (HR = 1.830, P = 0.035 ; HR = 5.161, P = 0.004 ; HR = 1.126, P = 0.030 ). The ROC curve showed that the AUC of length of tibial fracture with occult posterior ankle fracture was 0.599. The YD index suggested that the best cut point for the prediction of tibial fracture with occult posterior ankle fracture was above 13.18%. The sensitivity and specificity of spiral tibial fracture and distal 1/3 tibial fracture for prediction were 88.00% and 63.35%, 92.00%, and 58.39%, respectively, which was significantly higher than that of tibial fracture length ( P < 0.05 ). Conclusion. Patients with tibial fractures have a higher incidence of occult posterior ankle fractures. Spiral tibial fractures and distal 1/3 tibial fractures have a higher predictive value for tibial fracture with occult posterior ankle fractures and can help clinical detection as soon as possible, which is a more accurate and appropriate treatment.


Author(s):  
Julia Greenfield ◽  
Philipp Appelmann ◽  
Felix Wunderlich ◽  
Dorothea Mehler ◽  
Pol Maria Rommens ◽  
...  

Abstract Objectives Retrograde tibial nailing using the Distal Tibia Nail (DTN) is a novel surgical option in the treatment of distal tibial fracture. Its unique retrograde insertion increases the range of surgical options in far distal fractures of the tibia beyond the use of plating. The aim of this study was to assess the feasibility of the DTN for far distal tibia fractures where only double rather than triple-distal locking is possible due to fracture localisation and morphology. Methods Six Sawbones® were instrumented with a DTN and an AO/OTA 43-A3 fracture simulated. Samples were tested in two configurations: first with distal triple locking, second with double locking by removing one distal screw. Samples were subjected to compressive (350 N, 600 N) and torsional (± 8 Nm) loads. Stiffness construct and interfragmentary movement were quantified and compared between double and triple-locking configurations. Results The removal of one distal screw resulted in a 60–70% preservation of compressive stiffness, and 90% preservation of torsional stiffness for double locking compared to triple locking. Interfragmentary movement remained minimal for both compressive and torsional loading. Conclusions The DTN with a distal double locking can, therefore, be considered for far distal tibia fractures where nailing would be preferred over plating.


Sign in / Sign up

Export Citation Format

Share Document