scholarly journals A 3D printed cast for minimally invasive transfer of distal radius osteotomy: a cadaver study

Author(s):  
G. Caiti ◽  
J. G. G. Dobbe ◽  
S. D. Strackee ◽  
M. H. M. van Doesburg ◽  
G. J. Strijkers ◽  
...  

Abstract Purpose In corrective osteotomy of the distal radius, patient-specific 3D printed surgical guides or optical navigation systems are often used to navigate the surgical saw. The purpose of this cadaver study is to present and evaluate a novel cast-based guiding system to transfer the virtually planned corrective osteotomy of the distal radius. Methods We developed a cast-based guiding system composed of a cast featuring two drilling slots as well as an external cutting guide that was used to orient the surgical saw for osteotomy in the preoperatively planned position. The device was tested on five cadaver specimens with different body fat percentages. A repositioning experiment was performed to assess the precision of replacing an arm in the cast. Accuracy and precision of drilling and cutting using the proposed cast-based guiding system were evaluated using the same five cadaver arms. CT imaging was used to quantify the positioning errors in 3D. Results For normal-weight cadavers, the resulting total translation and rotation repositioning errors were ± 2 mm and ± 2°. Across the five performed surgeries, the median accuracy and Inter Quartile Ranges (IQR) of pre-operatively planned drilling trajectories were 4.3° (IQR = 2.4°) and 3.1 mm (IQR = 4.9 mm). Median rotational and translational errors in transferring the pre-operatively planned osteotomy plane were and 3.9° (IQR = 4.5°) and 2.6 mm (IQR = 4.2 mm), respectively. Conclusion For normal weight arm specimens, navigation of corrective osteotomy via a cast-based guide resulted in transfer errors comparable to those using invasive surgical guides. The promising positioning capabilities justify further investigating whether the method could ultimately be used in a clinical setting, which could especially be of interest when used with less invasive osteosynthesis material.

10.29007/svbd ◽  
2018 ◽  
Author(s):  
Vasilii Shishkin ◽  
Valeriy Golubev

Malunions of the distal radius are often treated with correction osteotomies, which can be challenging to perform.In this report, 23 patients with symptomatic distal radius malunions were treated using 3D printed patient-specific surgical guides to facilitate surgery. Patients were compared with a control group of 23 patients that underwent similar surgery with a conventional x-ray planning approach.Postoperatively all patients in the computer-assisted group showed recovery of ROM, with no anatomical abnormalities on x-ray examination. 6 patients in the conventional planning group had reduced ROM with a residual volar tilt on x-ray images.Computer-assisted planning with the use of 3D printed patient-specific surgical guides enhances results of corrective osteotomies of distal radius malunions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Babak Saravi ◽  
Gernot Lang ◽  
Rebecca Steger ◽  
Andreas Vollmer ◽  
Jörn Zwingmann

Malunions of the upper extremity can result in severe functional problems and increase the risk of osteoarthritis. The surgical reconstruction of complex malunions can be technically challenging. Recent advances in computer-assisted orthopedic surgery provide an innovative solution for complex three-dimensional (3-D) reconstructions. This study aims to evaluate the clinical applicability of 3-D computer-assisted planning and surgery for upper extremity malunions. Hence, we provide a summary of evidence on this topic and highlight recent advances in this field. Further, we provide a practical implementation of this therapeutic approach based on three cases of malunited forearm fractures treated with corrective osteotomy using preoperative three-dimensional simulation and patient-specific surgical guides. All three cases, one female (56 years old) and two males (18 and 26 years old), had painful restrictions in range of motion (ROM) due to forearm malunions and took part in clinical and radiologic assessments. Postoperative evaluation of patient outcomes showed a substantial increase in range of motion, reduction of preoperatively reported pain, and an overall improvement of patients' satisfaction. The therapeutic approach used in these cases resulted in an excellent anatomical and functional reconstruction and was assessed as precise, safe, and reliable. Based on current evidence and our results, the 3-D preoperative planning technique could be the new gold standard in the treatment of complex upper extremity malunions in the future.


2019 ◽  
Vol 124 ◽  
pp. 79-84 ◽  
Author(s):  
Marcel Müller ◽  
Dirk Winkler ◽  
Robert Möbius ◽  
Tobias Sauerstein ◽  
Sebastian Scholz ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 763
Author(s):  
Anne M. L. Meesters ◽  
Nick Assink ◽  
Kaj ten Duis ◽  
Eelco M. Fennema ◽  
Joep Kraeima ◽  
...  

Due to the complex anatomical shape of the pelvis, screw placement can be challenging in acetabular fracture surgery. This study aims to assess the accuracy of screw placement using patient-specific surgical drilling guides applied to pre-contoured conventional implants in acetabular fracture surgery. CT scans were made of four human cadavers to create 3D models of each (unfractured) pelvis. Implants were pre-contoured on 3D printed pelvic models and optically scanned. Following virtual preoperative planning, surgical drilling guides were designed to fit on top of the implant and were 3D printed. The differences between the pre-planned and actual screw directions (degrees) and screw entry points (mm) were assessed from the pre- and postoperative CT-scans. The median difference between the planned and actual screw direction was 5.9° (IQR: 4–8°) for the in-plate screws and 7.6° (IQR: 6–10°) for the infra-acetabular and column screws. The median entry point differences were 3.6 (IQR: 2–5) mm for the in-plate screws and 2.6 (IQR: 2–3) mm for the infra-acetabular and column screws. No screws penetrated into the hip joint or caused soft tissue injuries. Three-dimensional preoperative planning in combination with surgical guides that envelope pre-contoured conventional implants result in accurate screw placement during acetabular fracture surgery.


Author(s):  
Arivazhagan Pugalendhi ◽  
◽  
SenthilMurugan Arumugam ◽  
Rajesh Ranganathan ◽  
Sivakumar Ganesan ◽  
...  

Evolution of 3D printing from medical image datasets are escalating and has widespread in healthcare applications such as anatomical models, surgical guides, and customized implants. In 3D printing, solid objects are fabricated by the frequently added the thin layers of material as per the digital model. This paper demonstrates the fabrication of 3D printed patient-specific bone models of leg and ankle foot from Digital Imaging and Communications in Medicine (DICOM) files. Processing of DICOM file is prepared by D2P (DICOM to PRINT) software and physical models are produced by Stratasys uPrint 3D printer. This 3D printed anatomical model eliminates the requirement of actual human bones, significance of preservation and mistakes in assembly of bones. The results of the study not only encourage education, surgical planning and validating medical devices but stimulate exciting innovations.


2019 ◽  
Vol 03 (03) ◽  
pp. 151-160
Author(s):  
Michael J. Mosca ◽  
Pablo Castañeda

AbstractUse of three-dimensional (3D) printed models for preoperative planning, patient-specific surgical guides, and implants in orthopaedic surgery is a burgeoning technology. It has not been established if 3D-printed models for preoperative planning are associated with improved clinical outcomes or if they are cost-effective for hip surgeries including total hip arthroplasty (THA), periacetabular osteotomy (PAO), proximal femoral osteotomy (PFO), and/or hip fractures. The purpose of this study was to conduct a systematic search and literature review to determine if preoperative planning for hip surgery using 3D-printed models was associated with improved intra- and postoperative outcomes. Specific aims were to determine the (1) types of applications and studies conducted, (2) types of 3D printing/materials used, (3) specific outcomes evaluated, (4) efficacy of 3D printing in planning for hip surgery, and (5) limitations of current research. The authors searched Medline, Embase, Cochrane Database of Systematic Reviews, CINAHL, and PubMed from inception through July 2017. Original research publications were included if the primary purpose was to evaluate 3D-printed models' ability to assist with the planning of hip surgeries. Papers were excluded if they were reviews, abstracts, and not available in English, their models were not patient-specific, or their research did not evaluate surgery of the acetabulofemoral joint or pelvis. Of the 3,369 unique papers identified, 21 met inclusion criteria after full-text review. Among the included studies, six evaluated 3D printing in THA, seven in PAO/PFO, and eight in fracture repairs/reconstruction. The research included nine case reports, three case series, one retrospective uncontrolled study, six prospective uncontrolled studies, and two prospective controlled studies. 3D printed models resulted in: reduced intraoperative improvisation, operating room time, blood loss/transfusions, improved positioning of plates/screws/implants, clinical scores, measures of realignment, and functional status. Recent innovations in 3D printing are promising but unproven to improve clinical outcomes in hip surgeries due to limitations of published research. This may impact utilization and reimbursement of 3D-printed models in hip surgery. Studies of resource utilization, cost-effectiveness, and controlled trials with standardized methods and clinical outcomes of relevance are needed.


Sign in / Sign up

Export Citation Format

Share Document