scholarly journals Intraspecific phenotype variations in olive barb Systomus sarana (Hamilton, 1822) population from different rivers is possibly linked to locomotive adaptations in caudal fin

2020 ◽  
Vol 67 (3) ◽  
Author(s):  
Jyotsnarni Biswal ◽  
Rajeev K. Singh ◽  
Sangeeta Mandal ◽  
Rejani Chandran ◽  
Achal Singh ◽  
...  

Systomus sarana (Hamilton, 1822) [D1] is an economically important food fish species occurring throughout Indian rivers, which also has ornamental value. This study focused on morphological variations in S. sarana from five river basins across India, viz., Godavari, Mahanadi, Krishna, Middle Ganga and Lower Ganga. A truss network was constructed by interconnecting 12 landmarks to generate 65 morphometric variables extracted from digital images of specimens sampled from the study locations. Transformed truss measurements were subjected to Principal component analysis (PCA), Canonical discriminant function analysis (CDFA), Box plot and Thin plate spline (TPS) analyses. PCA identified eight truss variables with significant loadings, while CDFA designated two truss variables with potential for explaining discrimination between populations. Anterior attachment of dorsal membrane from caudal fin was identified to be the most important variable that presented variations across the river basins studied. Discriminant analysis correctly classified 70.5% of the specimens into their original populations. Thin plate spline for morphometric shape variation analysis indicated highest specimen-shape variations (warping) in Mahanadi basin. TPS-principal strain ratio on principal components (PC-1, PC-2) further revealed significant divergence among the populations in five river basins studied. Results of the study revealed variation in stocks of the species, on the basis of shape morphometry. The four significant parameters, differentiating specimens from different basins, were linked to caudal fin origin at dorsal side and the centre and possibly indicate plasticity in response to locomotive adaptations.

2021 ◽  
Vol 51 (4) ◽  
pp. 311-322
Author(s):  
Rommel R. ROJAS ◽  
Walter Vasquez MORA ◽  
Ethersi Pezo LOZANO ◽  
Emérita R. Tirado HERRERA ◽  
Eckhard W. HEYMANN ◽  
...  

ABSTRACT The skulls of 54 specimens of the South American tapir, Tapirus terrestris collected in the department of Loreto, Peru were measured, analyzed and compared to investigate skull development of this species. Univariate, multivariate and allometric analyses were performed using 32 skull variables through traditional morphometrics. Significant skull shape variation was detected among ontogenetic classes. Young individuals (class I, n = 22) showed higher variation than subadults and adults (class II, n = 23 and class III, n = 9), without evidence of sexual dimorphism (males = 35, females = 19). Principal component analyses and discriminant function analysis showed almost complete separation of the age classes. Allometric analysis indicated a tendency of unproportioned cranial growth. All our samples come from the same population living under the same ecological condition, which eliminates the effect of confounding variables related to habitat on the pattern of ontogenetic variation of this anatomical structure.


2021 ◽  
Vol 11 (7) ◽  
pp. 592
Author(s):  
Sonja A. G. A. Grothues ◽  
Klaus Radermacher

The native femoral J-Curve is known to be a relevant determinant of knee biomechanics. Similarly, after total knee arthroplasty, the J-Curve of the femoral implant component is reported to have a high impact on knee kinematics. The shape of the native femoral J-Curve has previously been analyzed in 2D, however, the knee motion is not planar. In this study, we investigated the J-Curve in 3D by principal component analysis (PCA) and the resulting mean shapes and modes by geometric parameter analysis. Surface models of 90 cadaveric femora were available, 56 male, 32 female and two without respective information. After the translation to a bone-specific coordinate system, relevant contours of the femoral condyles were derived using virtual rotating cutting planes. For each derived contour, an extremum search was performed. The extremum points were used to define the 3D J-Curve of each condyle. Afterwards a PCA and a geometric parameter analysis were performed on the medial and lateral 3D J-Curves. The normalized measures of the mean shapes and the aspects of shape variation of the male and female 3D J-Curves were found to be similar. When considering both female and male J-Curves in a combined analysis, the first mode of the PCA primarily consisted of changes in size, highlighting size differences between female and male femora. Apart from changes in size, variation regarding aspect ratio, arc lengths, orientation, circularity, as well as regarding relative location of the 3D J-Curves was found. The results of this study are in agreement with those of previous 2D analyses on shape and shape variation of the femoral J-Curves. The presented 3D analysis highlights new aspects of shape variability, e.g., regarding curvature and relative location in the transversal plane. Finally, the analysis presented may support the design of (patient-specific) femoral implant components for TKA.


2015 ◽  
Vol 124 ◽  
pp. 135-147 ◽  
Author(s):  
Shankar P. Sastry ◽  
Vidhi Zala ◽  
Robert M. Kirby

2019 ◽  
Author(s):  
Vera Weisbecker ◽  
Thomas Guillerme ◽  
Cruise Speck ◽  
Emma Sherratt ◽  
Hyab Mehari Abraha ◽  
...  

AbstractBackgroundWithin-species skull shape variation of marsupial mammals is widely considered low and strongly size-dependent (allometric), possibly due to developmental constraints arising from the altricial birth of marsupials. However, species whose skulls are impacted by strong muscular stresses – particularly those produced through mastication of tough food items – may not display such intrinsic patterns very clearly because of the known plastic response of bone to muscle activity of the individual. In such cases, shape variation should not be dominated by allometry; ordination of shape in a geometric morphometric context through principal component analysis (PCA) should reveal main variation in areas under masticatory stress (incisor region/zygomatic arches/mandibular ramus); but this main variation should emerge from high individual variability and thus have low eigenvalues.ResultsWe assessed the evidence for high individual variation through 3D geometric morphometric shape analysis of crania and mandibles of thre species of grazing-specialized wombats, whose diet of tough grasses puts considerable strain on their masticatory system. As expected, we found little allometry and low Principal Component 1 (PC1) eigenvalues within crania and mandibles of all three species. Also as expected, the main variation was in the muzzle, zygomatic arches, and masticatory muscle attachments of the mandibular ramus. We then implemented a new test to ask if the landmark variation reflected on PC1 was reflected in individuals with opposite PC1 scores and with opposite shapes in Procrustes space. This showed that correspondence between individual and ordinated shape variation was limited, indicating high levels of individual variability in the masticatory apparatus.DiscussionOur results are inconsistent with hypotheses that skull shape variation within marsupial species reflects a constraint pattern. Rather, they support suggestions that individual plasticity can be an important determinant of within-species shape variation in marsupials (and possibly other mammals) with high masticatory stresses, making it difficult to understand the degree to which intrinsic constraint act on shape variation at the within-species level. We conclude that studies that link micro- and macroevolutionary patterns of shape variation might benefit from a focus on species with low-impact mastication, such as carnivorous or frugivorous species.


Sign in / Sign up

Export Citation Format

Share Document