Bifractional Black-Scholes Model for Pricing European Options and Compound Options

2020 ◽  
Vol 8 (4) ◽  
pp. 346-355
Author(s):  
Feng Xu

AbstractRecent empirical studies show that an underlying asset price process may have the property of long memory. In this paper, it is introduced the bifractional Brownian motion to capture the underlying asset of European options. Moreover, a bifractional Black-Scholes partial differential equation formulation for valuing European options based on Delta hedging strategy is proposed. Using the final condition and the method of variable substitution, the pricing formulas for the European options are derived. Furthermore, applying to risk-neutral principle, we obtain the pricing formulas for the compound options. Finally, the numerical experiments show that the parameter HK has a significant impact on the option value.

Author(s):  
Mondher Bellalah

The Black-Scholes model is derived under the assumption that heding is done instantaneously. In practice, there is a “small” time that elapses between buying or selling the option and hedging using the underlying asset. Under the following assumptions used in the standard Black-Scholes analysis, the value of the option will depend only on the price of the underlying asset S, time t and on other Variables assumed constants. These assumptions or “ideal conditions” as expressed by Black-Scholes are the following. The option us European, The short term interest rate is known, The underlying asset follows a random walk with a variance rate proportional to the stock price. It pays no dividends or other distributions. There is no transaction costs and short selling is allowed, i.e. an investment can sell a security that he does not own. Trading takes place continuously and the standard form of the capital market model holds at each instant. The last assumption can be modified because in practice, trading does not take place in-stantaneouly and simultaneously in the option and the underlying asset when implementing the hedging strategy. We will modify this assumption to account for the “lag”. The lag corresponds to the elapsed time between buying or selling the option and buying or selling - delta units of the underlying assets. The main attractions of the Black-Scholes model are that their formula is a function of “observable” variables and that the model can be extended to the pricing of any type of option. All the assumptions are conserved except the last one.


2011 ◽  
Vol 14 (04) ◽  
pp. 485-505 ◽  
Author(s):  
AKIHIKO TAKAHASHI ◽  
YUKIHIRO TSUZUKI ◽  
AKIRA YAMAZAKI

This paper proposes a new hedging scheme of European derivatives under uncertain volatility environments, in which a weighted variance swap called the polynomial variance swap is added to the Black-Scholes delta hedging for managing exposure to volatility risk. In general, under these environments one cannot hedge the derivatives completely by using dynamic trading of only an underlying asset owing to volatility risk. Then, for hedging uncertain volatility risk, we design the polynomial variance, which can be dependent on the level of the underlying asset price. It is shown that the polynomial variance swap is not perfect, but more efficient as a hedging tool for the volatility exposure than the standard variance swap. In addition, our hedging scheme has a preferable property that any information on the volatility process of the underlying asset price is unnecessary. To demonstrate robustness of our scheme, we implement Monte Carlo simulation tests with three different settings, and compare the hedging performance of our scheme with that of standard dynamic hedging schemes such as the minimum-variance hedging. As a result, it is found that our scheme outperforms the others in all test cases. Moreover, it is noteworthy that the scheme proposed in this paper continues to be robust against model risks.


Author(s):  
Alan N. Rechtschaffen

An option is a derivative that derives its value from another underlying asset, instrument, or index. Options “transfer the right but not the obligation to buy or sell the underlying asset, instrument or index on or before the option's exercise date at a specified price (the strike price).” A contract that gives a purchaser such a right is inherently an option even if it called something else. Options can trade over the counter or on an exchange. Regulatory jurisdiction will be defined by the underlying asset negotiated under the terms of the option, by the location where the options are traded, and by the counterparties to an option transaction. This chapter discusses the characteristics of options, how options work, the Black-Scholes model and option pricing, delta hedging, and option strategies.


2016 ◽  
Vol 57 (3) ◽  
pp. 319-338
Author(s):  
T. G. LING ◽  
P. V. SHEVCHENKO

The local volatility model is a well-known extension of the Black–Scholes constant volatility model, whereby the volatility is dependent on both time and the underlying asset. This model can be calibrated to provide a perfect fit to a wide range of implied volatility surfaces. The model is easy to calibrate and still very popular in foreign exchange option trading. In this paper, we address a question of validation of the local volatility model. Different stochastic models for the underlying asset can be calibrated to provide a good fit to the current market data, which should be recalibrated every trading date. A good fit to the current market data does not imply that the model is appropriate, and historical backtesting should be performed for validation purposes. We study delta hedging errors under the local volatility model using historical data from 2005 to 2011 for the AUD/USD implied volatility. We performed backtests for a range of option maturities and strikes using sticky delta and theoretically correct delta hedging. The results show that delta hedging errors under the standard Black–Scholes model are no worse than those of the local volatility model. Moreover, for the case of in- and at-the-money options, the hedging error for the Black–Scholes model is significantly better.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Panhong Cheng ◽  
Zhihong Xu

In this paper, we study the valuation of European vulnerable options where the underlying asset price and the firm value of the counterparty both follow the bifractional Brownian motion with jumps, respectively. We assume that default event occurs when the firm value of the counterparty is less than the default boundary. By using the actuarial approach, analytic formulae for pricing the European vulnerable options are derived. The proposed pricing model contains many existing models such as Black–Scholes model (1973), Merton jump-diffusion model (1976), Klein model (1996), and Tian et al. model (2014).


2007 ◽  
Vol 44 (04) ◽  
pp. 865-879 ◽  
Author(s):  
Alexander Schied ◽  
Mitja Stadje

We consider the performance of the delta hedging strategy obtained from a local volatility model when using as input the physical prices instead of the model price process. This hedging strategy is called robust if it yields a superhedge as soon as the local volatility model overestimates the market volatility. We show that robustness holds for a standard Black-Scholes model whenever we hedge a path-dependent derivative with a convex payoff function. In a genuine local volatility model the situation is shown to be less stable: robustness can break down for many relevant convex payoffs including average-strike Asian options, lookback puts, floating-strike forward starts, and their aggregated cliquets. Furthermore, we prove that a sufficient condition for the robustness in every local volatility model is the directional convexity of the payoff function.


Author(s):  
Tomas Björk

The chapter starts with a detailed discussion of the bank account in discrete and continuous time. The Black–Scholes model is then introduced, and using the principle of no arbitrage we study the problem of pricing an arbitrary financial derivative within this model. Using the classical delta hedging approach we derive the Black–Scholes PDE for the pricing problem and using Feynman–Kač we also derive the corresponding risk neutral valuation formula and discuss the connection to martingale measures. Some concrete examples are studied in detail and the Black–Scholes formula is derived. We also discuss forward and futures contracts, and we derive the Black-76 futures option formula. We finally discuss the concepts and roles of historic and implied volatility.


2018 ◽  
Vol 59 (3) ◽  
pp. 349-369
Author(s):  
ZIWIE KE ◽  
JOANNA GOARD ◽  
SONG-PING ZHU

We study the numerical Adomian decomposition method for the pricing of European options under the well-known Black–Scholes model. However, because of the nondifferentiability of the pay-off function for such options, applying the Adomian decomposition method to the Black–Scholes model is not straightforward. Previous works on this assume that the pay-off function is differentiable or is approximated by a continuous estimation. Upon showing that these approximations lead to incorrect results, we provide a proper approach, in which the singular point is relocated to infinity through a coordinate transformation. Further, we show that our technique can be extended to pricing digital options and European options under the Vasicek interest rate model, in both of which the pay-off functions are singular. Numerical results show that our approach overcomes the difficulty of directly dealing with the singularity within the Adomian decomposition method and gives very accurate results.


2007 ◽  
Vol 03 (01) ◽  
pp. 0750001 ◽  
Author(s):  
CHENGHU MA

This paper derives an equilibrium formula for pricing European options and other contingent claims which allows incorporating impacts of several important economic variable on security prices including, among others, representative agent preferences, future volatility and rare jump events. The derived formulae is general and flexible enough to include some important option pricing formulae in the literature, such as Black–Scholes, Naik–Lee, Cox–Ross and Merton option pricing formulae. The existence of jump risk as a potential explanation of the moneyness biases associated with the Black–Scholes model is explored.


Sign in / Sign up

Export Citation Format

Share Document