ROLE OF THERMAL SUBSIDENCE, FLEXURE, AND EUSTASY IN THE EVOLUTION OF EARLY PALEOZOIC PASSIVE-MARGIN CARBONATE PLATFORMS

Author(s):  
GERARD C. BOND ◽  
MICHELLE A. KOMINZ ◽  
MICHAEL S. STECKLER ◽  
JOHN P. GROTZINGER
1988 ◽  
Vol 25 (1) ◽  
pp. 1-19 ◽  
Author(s):  
William J. Devlin ◽  
Gerard C. Bond

The uppermost Proterozoic–Lower Cambrian Hamill Group of southeastern British Columbia contains geologic evidence for a phase of extensional tectonism that led directly to the onset of thermally controlled subsidence in the Cordilleran miogeocline. Moreover, the Hamill Group contains the sedimentological record of the passage of the ancient passive margin from unstable tectonic conditions associated with rifting and (or) the earliest phases of thermal subsidence to post-rift conditions characterized by stabilization of the margin and dissipation of the thermal anomaly generated during the rift phase (the rift to post-rift transition). Widespread uplift that occurred prior to and during the deposition of the lower Hamill Group is indicated by an unconformable relation with the underlying Windermere Supergroup and by stratigraphic relations between Middle and Upper Proterozoic strata and unconformably overlying upper Lower Cambrian quartz arenites (upper Hamill Group) in the southern borderlands of the Hamill basin. In addition, the coarse grain size, the feldspar content, the depositional setting, and the inferred provenance of the lower Hamill Group are all indicative of the activation of basement sources along the margins of the Hamill basin. Geologic relations within the Hamill Group that provide direct evidence for extensional tectonism include the occurrence of thick sequences of mafic metavolcanics and rapid vertical facies changes that are suggestive of syndepositional tectonism.Evidence of extensional tectonism in the Hamill Group directly supports inferences derived from tectonic subsidence analyses that indicate the rift phase that immediately preceded early Paleozoic post-rift cooling could not have occurred more than 10–20 Ma prior to 575 ± 25 Ma. These data, together with recently reported isotopic data that suggest deposition of the Windermere Supergroup began ~730–770 Ma, indicate that the rift-like deposits of the Windermere Supergroup are too old to represent the rifting that led directly to the deposition of the Cambro-Ordovician post-rift strata. Instead, Windermere sedimentation was apparently initiated by an earlier rift event, probably of regional extent, that was part of a protracted, episodic rift history that culminated with continental breakup in the latest Proterozoic – Early Cambrian.


1988 ◽  
Vol 25 (11) ◽  
pp. 1906-1911 ◽  
Author(s):  
William J. Devlin ◽  
Hannes K. Brueckner ◽  
Gerard C. Bond

New Sm–Nd and Rb–Sr data are presented from the volcanic member of the Huckleberry Formation, a unit near the base of the upper Proterozoic Windermere Supergroup in northeastern Washington. The isotopic data are compatible with a rift setting during deposition of Windermere strata. A best-fit line through all the data yields an age of 795 Ma with a large error of ±115 Ma (2σ). However, a preliminary Sm–Nd mineral–whole-rock age of 762 ± 44 Ma (2σ) obtained from a least-altered basalt is within error of other age information from the Canadian Cordillera that broadly constrains the initiation of Windermere deposition to ~750 (±30) Ma. A synthesis of isotopic data, of the results of tectonic subsidence analyses, and of geologic relations within the Windermere Supergroup and the immediately overlying uppermost Proterozoic – Lower Cambrian strata leads to the conclusion that the Windermere Supergroup does not represent the rift deposits that led directly to the initiation of the early Paleozoic miogeocline. Instead, Windermere sedimentation occurred as a result of a protracted, episodic rift history that culminated with latest Proterozoic – Early Cambrian rifting associated with the onset of thermal subsidence in the ancient passive margin.


2010 ◽  
Vol 82 (2) ◽  
pp. 439-449 ◽  
Author(s):  
Dilce F. Rossetti

The traditional view that the Brazilian Amazonia is located in a tectonically stable area since the Cretaceous is changing in front of the increasing documentation of fault reactivations even during the Holocene. How the sedimentary record has responded to these events is an issue that remains to be approached with basis on field data. This work focuses on the stratigraphic correlation of late Quaternary deposits from eastern Marajó Island, with the goal of demonstrating the role of fault reactivation on the origin and preservation of these deposits. Despite the location in a stable platform of a continental passive margin, three studied stratigraphic units display significant vertical offsets that define two depocenters that are better explained through tectonic displacements. This interpretation is reinforced by several morphostructural features related to faults that occur between the studied drills. Without the influence of tectonics, sediment preservation in this characteristically low-lying terrain would have been negligible. The results of the present work motivate to look for other tectonically-influenced areas in Amazonia, which similarly might have acted as sites for sediment accommodation during the late Quaternary. These sedimentary records have great potential to be the source of valuable information for reconstructing Quaternary geological events in Northern Brazil.


2019 ◽  
Vol 131 (3-4) ◽  
pp. 695-698
Author(s):  
Ed Landing ◽  
Osman Salad Hersi ◽  
Lisa Amati ◽  
Stephen R. Westrop ◽  
David A. Franzi

1990 ◽  
Vol 27 (11) ◽  
pp. 1552-1554 ◽  
Author(s):  
Stephen Kumarapeli ◽  
Karen St. Seymour ◽  
Hillar Pintson ◽  
Elizabeth Hasselgren

2018 ◽  
Author(s):  
Xuesong Ding ◽  
Tristan Salles ◽  
Nicolas Flament ◽  
Patrice Rey

Abstract. The sedimentary architecture at continental margins reflects the interplay between the rate of change of accommodation creation (δA) and the rate of change of sediment supply (δS). As a result, stratigraphic interpretation increasingly focuses on understanding the link between deposition patterns and changes in δA/δS. Here, we use the landscape modelling framework pyBadlands to assess the respective performance of two well-established stratigraphic interpretation techniques: the trajectory analysis method and the accommodation succession method. In contrast to most Stratigraphic Forward Models (SFMs), pyBadlands provides self-consistent sediment supply to basin margins as it simulates erosion, sediment transport and deposition in a source-to-sink context. We present a landscape evolution that takes into account periodic sea level variations and passive margin thermal subsidence over 30 million years, under uniform rainfall. We implement the two aforementioned approaches to interpret the resulting depositional cycles at the continental margin. We first apply both the trajectory analysis and the accommodation succession methods to manually map key stratigraphic surfaces and define stratigraphic units from shelf-edge (or offlap break) trajectories, stratal terminations and stratal geometries. We then design a set of post-processing numerical tools to calculate shoreline and shelf-edge trajectories, the temporal evolution of changes in accommodation and sedimentation, and automatically produce stratigraphic interpretations. Comparing manual and automatic stratigraphic interpretations reveals that the results of the trajectory analysis method depend on time-dependent processes such as thermal subsidence whereas the accommodation succession method does not. In addition to reconstructing stratal stacking patterns, the tools we introduce here make it possible to quickly extract Wheeler diagrams and synthetic cores at any location within the simulated domain. Our work provides an efficient and flexible quantitative sequence stratigraphic framework to evaluate the main drivers (climate, sea level and tectonics) controlling sedimentary architectures and investigate their respective roles in sedimentary basins development.


1992 ◽  
Vol 6 ◽  
pp. 248-248
Author(s):  
L.L. Robbins ◽  
K. Yates

Geologists have long been plagued by the lack of evidence for the origin of ancient micrite deposits: any paleontological evidence is typically obscured or lacking altogether. The role of modern marine picoplankton gives insight into the origin of one mode of lime mud formation and may aid in the interpretation of ancient marine deposits.Whitings, patches of floating lime mud in supersaturated seawater on carbonate platforms, obtained from the Bahama Bank were analyzed utilizing biochemical techniques and Transmission Electron Microscopy. All Whitings indicated a close association between picoplankton cellular material and calcium carbonate crystals. Culture experiments indicated the presence of at least ten different picoplankton species in Whitings water. Two major genera found were the blue-green algae, Synechococcus and Synechocystis. Field and laboratory experimental data indicated that these cells and cellular organics play a major role in Whitings formation. The cells may undergo epicellular precipitation of calcium carbonate induced by photosynthesis. Environmental conditions necessary for this process have been delineated through field data and laboratory experiments.While picoplankton organics are rarely preserved over geologic time, the product of their life habit, namely lime mud, is preserved as micrite. Thick occurrences of micrite deposited in marine environments are widespread throughout the geologic record, ranging in age from Precambrian to Recent. Although rare, fossilized blue-green algae have been observed in Archean rocks and may be the only evidence that implicates these organisms in lime mud formation. The Whitings phenomenon serves as an excellent example in which a specific type of organism may be a prolific contributor to the rock record, and yet leaves no direct paleontological evidence of its involvement.


Sign in / Sign up

Export Citation Format

Share Document