upper proterozoic
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 14)

H-INDEX

36
(FIVE YEARS 0)

2021 ◽  
Vol 8 (1) ◽  
pp. 33-62
Author(s):  
Nisha Chettri ◽  
Karan Nayak

The Shillong Plateau is characterized by multiple phases of deformation and number of prominent sets joints/fracture system. The Southern Shillong Plateau unlike the northern part is highly dissected by the scarp faces which are mostly erosional. The area is characterized by deep incising river networks which cuts across many lithological units. To understand the factors influencing the drainage characteristic of the area and landscape development, the present study has been done in context of morphometry, geomorphology and geology of the drainage basin. Fifteen sub basins of 4th order have been selected from the Um Sohrynkew River basin. Drainage morphometry, indices of active tectonism, geology and tectonics and landform features have been worked out for better evaluation of drainage characteristics. The study area forms part of the Meghalaya Precambrian province of upper Proterozoic age. The southern border of the Shillong Plateau is demarcated by Dauki (Also known as Dawki) fault which is a prominent structural lineament. It consists of at least four E-W trending normal faults with occasional reversal. The segment of the Dauki fault in the study area is believed to be active. The present study focuses on the drainage network and the landscape development of the study area where a very strong relationship has been observed between the lithology and structure together with the tectonic activity influencing the drainage pattern in the area.


LITOSFERA ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 449-468
Author(s):  
S. A. Dub

Research subject. Main problems of the General Stratigraphic Scale (GSS) of the Upper Precambrian including uncertainties in the hierarchy of subdivisions are analyzed.Results. Prospects for detailing the Upper Precambrian GSS are discussed, along with questions of its correlation with International Chronostratigraphic Chart (ICSC) and establishing the lower boundaries of chronostratigraphic subdivisions. The importance of unifying the existing views is emphasized.Conclusions. It is proposed to carry out the following reforms of GSS: to abolish Acrothemes / Acrons; to approve the Proterozoic (as well as the Archean) as an Eonotheme / Eon; to minimize the use of terms “Upper Proterozoic” and “Lower Proterozoic”; to assign the Riphean and Vendian to the rank of Erathem / Era (while preserving the status of the Vendian as a System / Period); to consider Burzyanian, Yurmatinian, Karatavian and Arshinian as Systems / Periods of the Riphean. Attention is focused on the Upper Riphean-Vendian interval. The lower boundary of the Upper Riphean (Karatavian) was proposed to establish according to the first appearance of the Trachyhystrichosphaera sp. microfossils. Then, the Terminal Riphean (Arshinian) lower boundary should be traced to the base of the tillites formed during the global Sturtian glaciation (which approximately corresponds to the base of the Cryogenian in ICSC). Apparently, the Vendian lower boundary may be raised to the level of the top of the Gaskiers tillites, as the deposits of the last major glaciation in the Precambrian. The indicated proposals are substantiated. It is necessary to form work groups to develop solutions.


Georesursy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 70-77
Author(s):  
Igor A. Gubin ◽  
Vladimir A. Kontorovich

The velocity characteristics of the Upper Proterozoic-Phanerozoic sedimentary cover of the Anabar-Olenek region were studied, in particular, the bimodal character of the distribution interval P-wave velocities was established. Taking into account modern ideas about the chronostratigraphy of sediments encountered by the Charchykskaya-1, Burskaya-3410 and Khastakhskaya-930 deep boreholes, stratification of reflecting horizons was carried out and time sections from previous years were reinterpreted. From the perspective of seismic stratigraphic and seismic facies analysis, the Cambrian, Vendian, and Riphean intervals of the section were examined in detail. In the course of the analysis, adjustments to the stratigraphic breakdown of the Burskaya-3410 and Charchykskaya-1 boreholes are proposed. The study shows that the Lapar Formation, which underwent Prepermian erosion, increase in the thickness multiple in an eastward direction. The distribution areas of the Tuessal Formation, the Lower and Middle Cambrian clinoform complex, as well as the areas of the Upper Riphean Formations reaching the Prevendian erosion surface are contoured. An Intrariphean tectonic disagreement between the Kulady Formation and older deposits was established.


2021 ◽  
Author(s):  
D.D. Kozhanov ◽  
◽  
I.S. Khopta ◽  

The article summarizes the literature data of domestic and foreign researchers on the geological and geochemical conditions of the formation and transformation of the original organic matter of ancient Upper Proterozoic strata, as well as key points in understanding the processes of their accumulation at the R-V boundary.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 974
Author(s):  
Yaroslava Yaremchuk ◽  
Sofiya Hryniv ◽  
Tadeusz Peryt ◽  
Serhiy Vovnyuk ◽  
Fanwei Meng

Information on the associations of clay minerals in Upper Proterozoic and Phanerozoic marine evaporite formations suggests that cyclic changes in the (SO4-rich and Ca-rich) chemical type of seawater during the Phanerozoic could affect the composition of associations of authigenic clay minerals in marine evaporite deposits. The vast majority of evaporite clay minerals are authigenic. The most common are illite, chlorite, smectite and disordered mixed-layer illite-smectite and chlorite-smectite; all the clay minerals are included regardless of their quantity. Corrensite, sepiolite, palygorskite and talc are very unevenly distributed in the Phanerozoic. Other clay minerals (perhaps with the exception of kaolinite) are very rare. Evaporites precipitated during periods of SO4-rich seawater type are characterized by both a greater number and a greater variety of clay minerals—smectite and mixed-layer minerals, as well as Mg-corrensite, palygorskite, sepiolite, and talc, are more common in associations. The composition of clay mineral association in marine evaporites clearly depends on the chemical type of seawater and upon the brine concentration in the evaporite basin. Along with increasing salinity, aggradational transformations of clay minerals lead to the ordering of their structure and, ideally, to a decrease in the number of minerals. In fact, evaporite deposits of higher stages of brine concentration often still contain unstable clay minerals. This is due to the intense simultaneous volcanic activity that brought a significant amount of pyroclastic material into the evaporite basin; intermediate products of its transformation (in the form of swelling minerals) often remained in the deposits of the potassium salt precipitation stage.


LITOSFERA ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 607-629
Author(s):  
V. A. Koroteev ◽  
V. M. Necheukhin ◽  
V. A. Dushin ◽  
E. N. Volchek

Research subject. This article is devoted to the formation features of the Ural-Timan-Paleo-Asian segment of Eurasia. Materials and methods. The research was based on the authors’ data and those obtained following a review of available publications on the geology of segmentation. The Timan region was investigated using the geological information obtained by V.G. Olovyanishnikov.Results. A geodynamic map of the Ural-Timan-Paleo-Asian segment with a scale of 1 : 2 500 000 was compiled, which allowed further research into the structure and formation of the north-western part of the Eurasian area. This part was found to be mostly composed of geodynamic associations of orogens, orogenic systems and orogenic belts of the Upper Proterozoic (Riphean) and Paleozoic time intervals, as well as by elements of the Mesozoic-Cenozoic neoplate. These processes were supplemented by the formation of tectonic systems of superimposed depressions and protoplate protrusions. The formation of orogens, orogenic systems and orogenic belts is associated with the development and subsequent transformation of paleooceanic basins under the conditions of accretion and collision. The terranes of the ancient continental crust also participated in the formation of the segment’s geodynamic elements, for which a typification scheme was proposed. The articles present new data on the formation conditions of the segment’s orogenic elements and the relationship of the orogeny with global reconstructions, including the problem of closing the surrounding oceanic space.


2020 ◽  
Vol 57 (5) ◽  
pp. 662-670
Author(s):  
Catherine Hickson ◽  
John Pollack ◽  
Lambertus Struik ◽  
Lee Hollis ◽  
Chas Yonge

In April 2018, a significant cave entrance was recognized during an aerial survey in Wells Gray Provincial Park, British Columbia. A September 2018 assessment of the site confirmed one of the largest known, and previously undocumented, cave entrances in Canada. The feature is a large vertically walled sink swallowing a small river, likely leading to a spring 2.16 km horizontally from, and 460 m below, the sink. The entrance shaft was partially descended, surveyed, and found to have a volume of over 450 000 m3. Formed in a carbonate unit of the upper Proterozoic Horsethief Creek Group, the cave entrance occurs in stripe karst extending well beyond the known cave drainage. The disappearing river drains an area of 6.3 km2 in a valley containing two small glaciers. The river has a low flow (September) rate estimated at 0.3–0.5 m3/s, comparable with some of the largest sinks in Canada. Historic aerial photographs of the area show the entrance was hidden by perennial snowfields until regional climatic warming caused the snow plug to collapse sometime within the past decade.


2020 ◽  
Vol 47 (1) ◽  
pp. 14
Author(s):  
María José J. Espeche ◽  
Raúl Lira ◽  
Nicolás A. Viñas

On-going mining operations in a marble quarry (Cantera Centro) from Malagueño, Sierra Chica de Córdoba, Argentina, have unearthed veins, veinlets and lenses of sulfides (pyrrhotite>pyrite≅ chalcopyrite>>sphalerite). These veins and lenses are up to 0.3 m thick and 2-3 m long, although intermittently can extend about a hundred meters. They are associated with skarns. The metasedimentary host sequence, largely composed of gneisses, amphibolites and marbles, was intruded by amphibolic metagabbro and metadiorite dykes, metatonalite plutons and alkali-feldspar metagranites; the whole complex was metamorphosed into medium to high amphibolite facies and strongly deformed as a result of the a regional event M2-D2/D3 that affected the Neoproterozoic-Cambrian basement during the Pampean orogeny. Except for gneisses, all the other metamorphic lithologies register evidence of differential alteration into skarn, although the process was preferentially developed on marbles, amphibolites and metagranite, and to a lesser exten on mafic and mesosilicic dykes. The metasomatic rocks are characterized by a garnet>>pyroxene skarn (Grs27-48Adr22-34Alm15-27Sps9-21), formed after the replacement of the metagranite; a pyroxene-rich skarn (Hd42-63Di32-50Jo3-5) developed after para-amphibolite, and a garnet (Adr54-71Grs22-40Alm4-7Sps1-2) (±wollastonite) skarn that replaced a calcic marble. The dykes show poor metasomatic replacement and lack sulfides of metasomatichydrothermal origin. Retrograde mineral associations include hastingsite, ferroactinolite, epidote, clinozoisite, sericite, plagioclase (An18), chamosite and calcite. The sulfide mineralization is paragenetically associated with late-stage, infilling skarn-hydrothermal minerals that were sequentially deposited as: calcite→clinochlore→quartz→pyrite→pyrrhotite→chalcopyrite+sphalerite; these phases occur as veins and veinlets within the garnetpyroxene skarn, and as massive pyrrhotite lenses in the piroxene-rich skarn. Microthermometric data from fluid inclusions in sulfide related calcite, together with the geothermometric data from the Fe/Mg ratios in clinochlore and the phase equilibria data from intergrown high and low T ºC pyrrhotite phases, all constrain the infilling gangue phases and sulfide crystallization temperature within the ~360 °C to 250 °C range; the gradual termal decrease is in agreement with the temporal depositional sequence of the infilling phases. Fluid inclusion petrographic data and salinity estimations suggest that sulfide precipitation was triggered by boiling, from a fluid of moderate to high salinity (~14.5 to 33.5 wt% eq. NaCl). Evidence that the fluid evolved under dominantly reducing conditions are the high Fe+2/(Fe+2+Fe+3) ratios and molar proportions of subcalcic garnet (Alm+Sps) in garnet-pyroxene skarn, the presence of fluid inclusion sulfide daughter crystals in calcite, the high H2S/SO42- ratios in the sulfide-bearing fluid and the presence of pyrrhotite among the sulfide phases. Disseminated primary chalcopyrite and pyrite in metagabbro-diorite dykes (Cu ~300 ppm) and the high contents of Cu in amphibolite (~900 ppm) suggest that these protolithic lithologies were the probable sources of metals (Cu>>Zn±Ag). Values of δ34SΣfluid between ~-4 to +1.4‰ obtained from the fractionations factors of pyrite, pyrrhotite and chalcopyrite within the thermal range 350-150 ºC, indicate a magmatic source for sulfur, likely provided by leaching or desulfidation of primary sulfides of the metagabbro-diorite dykes. Metals and sulfur supplied by these dykes and amphibolite would have been redistributed in the skarn after the circulation of the metasomatic-hydrothermal fluids. Skarn bodies would have formed by infiltration of deep metasomatic fluids and fluid-rock interaction which affected lithologies of the Upper Proterozoic-Cambrian metamorphic basement. Fluids could have derived from hidden Cambrian intrusives, or from the surrounding regional migmatization, channeled along lithological contacts and faults/fractures. Field setting, textural and mineralogical evidence of sulfide mineralization in the skarn assemblage of Cantera Centro, suggest a Cambrian age associated to the post-deformational stage of the Pampean Orogeny.


Sign in / Sign up

Export Citation Format

Share Document