scholarly journals The use of Some Aliphatic Halorgano antimony Compounds as combustion Retarding agents of Unsaturated Polyester and Epoxy Resins

2010 ◽  
Vol 7 (4) ◽  
pp. 1389-1394
Author(s):  
Baghdad Science Journal

Four antimony compounds were used in this inves as additives to retard combustion of unsaturated polyester and epoxy resins, namely: 1. Tetraethyl ammonium tribromoethylantimonates (additive I). 2. Tetraethyl ammonium chlorodibromoethylantimonates (additive II). 3. Tetraethyl ammonium trichloroethylantimonates (additive III). 4. Tetraethyl ammonium bromodichloroethylantimonates (additive IV). The effects of these additives on flammability of unsaturated polyester and epoxy resins have been studied by using sheets of the resins with weight percentages of (0.5,1.0,1.5,2.0,2.5&3.0%) of the additives in dimensions of (150 X150X3)mm .Three standard test methods were used to measure the flame retardation which are: (ASTM:D -2863), (ASTM:D-635)and (ASTM:D-3014). The results obtained from these tests indicated that, additive I has a high efficiency as flame retardant causing , self – extinguishing (S.E.) at the percentage of (2.0%) for unsaturated polyester resin and the percentage (2.5%) for epoxy resin. Self – extinguishing (S.E.) of additives II and IV were at the percentage of (2.5%) for unsaturated polyester resin and (3.0%) in the case of epoxy resin. Additive III showed low effect on flammability in both resins

2014 ◽  
Vol 11 (2) ◽  
pp. 393-398
Author(s):  
Baghdad Science Journal

In this work, the synergistic effect of chlorinated rubber (additive I),with zeolite 3A (additive II), zeolite 4A (additive III), and zeolite 5A (additive IV) in (1:1) weight percentage, on the flammability for unsaturated polyester resin was studied in the weight ratios for (3,7,10,13&15%) by preparing films of (130×130×3) mm in diameters. Three standard test methods used to measure were the flame retardation which are; ASTM: D-2863, ASTM: D- 635& ASTM: D-3014. Results obtained from these tests indicated that all of the additives were effective additive IV has the highest efficiency as a flame retardant.


2013 ◽  
Vol 10 (3) ◽  
pp. 561-568 ◽  
Author(s):  
Baghdad Science Journal

In this work , the effect of chlorinated rubber (additive I), zeolite 3A with chlorinated rubber (additive II), zeolite 4A with chlorinated rubber (additiveIII), and zeolite 5A with chlorinated rubber (additive IV), on flammability for epoxy resin studied, in the weight ratios of (2, 4, 7,10 & 12%) by preparing films of (130x130x3) mm in diameters, three standard test methods used to measure the flame retardation which are ; ASTM : D-2863 , ASTM : D-635 & ASTM : D-3014. Results obtained from these tests indicated that all of them are effective and the additive IV has the highest efficiency as a flame retardant.


2008 ◽  
Vol 5 (1) ◽  
pp. 131-136
Author(s):  
Baghdad Science Journal

In this investigation , borax (B) (additive I) and chlorinated paraffin (CP.) (additive II) ,were used as flame retardants for each of epoxy and unsaturated polyester resins in the weight ratios of 2,4,6, & 8% by preparing films of (130×130×3) mm dimensions. Also films of these resins with a mixture of [50%(B.)+50%(CP.)] (additive III) in the same weight ratios were prepared in order to study the synergistic effect of these additives on the flammability of the two resins . Three standard test methods were used to measure the flame retardation which are : 1-ASTM : D-2863 2-ASTM : D-635 3-ASTM : D-3014 The results obtained from these tests indicated that the additives (B),(CP.) and their mixture , gave a good effect as flame retardants for each epoxy and unsaturated polyester resins , but their synergistic effect was more effective than each of them alone. Finally , the compatibility between the additives and resins (which showed a clear effect on retardation) was also studied .


Author(s):  
Chang Dae Han

Pultrusion of thermoset/fiber composites generally consists of pulling continuous rovings and/or continuous glass mats through a resin bath or impregnator and then into preforming fixtures, where the section is partially shaped and excess resin and/or air are removed. Finally, the preformed profiles are pulled through heated dies, where the section is cured continuously (Batch 1989; Meyer 1985; Price 1979; Richard 1986). The pultrusion process is one of the most cost-effective continuous processing techniques for producing thermoset composite materials. The laminating resin may be an unsaturated polyester resin, a vinyl ester resin, or an epoxy resin, but the majority of pultruded thermoset products currently use unsaturated polyester resins. The reason for this is that epoxy resins require high heat inputs and have relatively slow gelation, although some effort has been spent on development of new epoxy resin systems that can be pultruded at speeds comparable with unsaturated polyester resin systems (e.g., 0.6–0.9 m/min). Han and coworkers (Han et al. 1986, Han and Chin 1988) formulated and then solved numerically, via the finite difference method, a system of equations describing the cure kinetics of a thermoset resin and the heat transfer between the resin and the die wall, in order to model the pultrusion process for thermoset/fiber composites. Subsequently, other investigators (Batch and Macosko 1993; Chachad et al. 1995; Gorthala et al. 1994a, 1994b; Ma et al. 1986) reported similar studies. Experimental studies (Batch and Macosko 1993; Chachad et al. 1995; Ma et al. 1986; Price 1979; Price and Cupschalk 1984; Roux et al. 1998) on the pultrusion process for thermoset/fiber composites have also been reported. Some research groups (Aström and Pipes 1993; Larock et al. 1989; Ma and Chen 1991; Ruan and Liu 1994) have investigated the pultrusion process of fiber-reinforced thermoplastic polymers. While there are some similarities between the pultrusion of thermoset/fiber composites and fiber-reinforced thermoplastic polymers, the most important difference between the two lies in that the former involves chemical reactions during processing, whereas the latter does not.


RSC Advances ◽  
2016 ◽  
Vol 6 (89) ◽  
pp. 86632-86639 ◽  
Author(s):  
Yongqiang Lin ◽  
Saihua Jiang ◽  
Zhou Gui ◽  
Guohui Li ◽  
Xingxing Shi ◽  
...  

Unsaturated polyester resin (UP) as one of the most important thermoset materials often exhibits serious fire hazards.


2018 ◽  
Vol 37 (7) ◽  
pp. 2674-2686 ◽  
Author(s):  
Guo Jiang ◽  
Liang Chen ◽  
Saihua Jiang ◽  
Keqing Zhou ◽  
Xingxing Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document