seafloor topography
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 55)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 8 ◽  
Author(s):  
Fabrice Stephenson ◽  
Ashley A. Rowden ◽  
Tom Brough ◽  
Grady Petersen ◽  
Richard H. Bulmer ◽  
...  

To support ongoing marine spatial planning in New Zealand, a numerical environmental classification using Gradient Forest models was developed using a broad suite of biotic and high-resolution environmental predictor variables. Gradient Forest modeling uses species distribution data to control the selection, weighting and transformation of environmental predictors to maximise their correlation with species compositional turnover. A total of 630,997 records (39,766 unique locations) of 1,716 taxa living on or near the seafloor were used to inform the transformation of 20 gridded environmental variables to represent spatial patterns of compositional turnover in four biotic groups and the overall seafloor community. Compositional turnover of the overall community was classified using a hierarchical procedure to define groups at different levels of classification detail. The 75-group level classification was assessed as representing the highest number of groups that captured the majority of the variation across the New Zealand marine environment. We refer to this classification as the New Zealand “Seafloor Community Classification” (SCC). Associated uncertainty estimates of compositional turnover for each of the biotic groups and overall community were also produced, and an added measure of uncertainty – coverage of the environmental space – was developed to further highlight geographic areas where predictions may be less certain owing to low sampling effort. Environmental differences among the deep-water New Zealand SCC groups were relatively muted, but greater environmental differences were evident among groups at intermediate depths in line with well-defined oceanographic patterns observed in New Zealand’s oceans. Environmental differences became even more pronounced at shallow depths, where variation in more localised environmental conditions such as productivity, seafloor topography, seabed disturbance and tidal currents were important differentiating factors. Environmental similarities in New Zealand SCC groups were mirrored by their biological compositions. The New Zealand SCC is a significant advance on previous numerical classifications and includes a substantially wider range of biological and environmental data than has been attempted previously. The classification is critically appraised and considerations for use in spatial management are discussed.


2022 ◽  
Vol 9 ◽  
Author(s):  
Elena Scacchia ◽  
Roberto Tinterri ◽  
Fabiano Gamberi

Overbank deposits provide a potentially valuable record of flows that have passed through a submarine channel. The architecture of overbank deposits has generally assumed to relate to autogenic processes related to channel construction. In previous models, which are largely based on passive margins, the distribution and geometry of these deposits is relatively simple, and hence generally predictable. Here, we show how the interaction of different flow types with the complex morphology on a highly-tectonically modified margin can profoundly affect overbank depositional processes, and hence also the resultant deposit geometry and architecture. Our case study is the Acquarone Fan, located in the intraslope Gioia Basin in the south-eastern Tyrrhenian Sea, whose topography is mainly controlled by the presence of the Acquarone structural ridge, which results in the confinement of the left south-west side of the channel-levee system. The research is carried out through analysis of multibeam bathymetric and high-resolution Chirp sub-bottom profiler data. Seven depositional units (Units I-VII) record the recent depositional history of the fan; their thickness has been mapped and their parent flow-types have been interpreted through their seismic response. According to unit thickness maps, two main patterns of deposition are recognized in the overbank area. Their depocenters coincide with different extensive sediment wave fields developed in specific tracts of the right levee and in the frontal splay area. We show that the location of the depocenters varies in time according to the prevalent flow-type and by its interaction with the surrounding seafloor topography and channel planform. We interpret that the lateral confinement of the channel by the structural high generates episodic rebound of the overspilling flow and the inversion of the channel asymmetry. The vertical stratification of the flow strongly influences the overbank deposition where the channel planform has a non-linear shape such as bends and knick-points. In particular, the vertical stratification influences the hydraulic jump size that conditions the amount of overspill and thus the location of overbank depocenters. This study highlights that variations in the sediment distribution and composition on the overbank can be related to the way different flows interact with tectonic setting.


2021 ◽  
Vol 14 (1) ◽  
pp. 169
Author(s):  
Lucía Seoane ◽  
Guillaume Ramillien ◽  
Benjamin Beirens ◽  
José Darrozes ◽  
Didier Rouxel ◽  
...  

An iterative Extended Kalman Filter (EKF) approach is proposed to recover a regional set of topographic heights composing an undersea volcanic mount by the successive combination of large numbers of gravity measurements at sea surface using altimetry satellite-derived grids and taking the error uncertainties into account. The integration of the non-linear Newtonian operators versus the radial and angular distances (and its first derivatives) enables the estimation process to accelerate and requires only few iterations, instead of summing Legendre polynomial series or using noise-degraded 2D-FFT decomposition. To show the effectiveness of the EKF approach, we apply it to the real case of the bathymetry around the Great Meteor seamount in the Atlantic Ocean by combining only geoid height/free-air anomaly datasets and using ship-track soundings as reference for validation. Topography of the Great Meteor seamounts structures are well-reconstructed, especially when regional compensation is considered. Best solution gives a RMS equal to 400 m with respect to the single beam depth observations and it is comparable to RMS obtained for ETOPO1 of about 365 m. Larger discrepancies are located in the seamount flanks due to missing high-resolution information for gradients. This approach can improve the knowledge of seafloor topography in regions where few echo-sounder measurements are available.


2021 ◽  
Vol 9 ◽  
Author(s):  
Donald N. Christie ◽  
Frank J. Peel ◽  
Gillian M. Apps ◽  
David “Stan” Stanbrook

The stratal architecture of deep-water minibasins is dominantly controlled by the interplay of two factors, structure growth and sediment supply. In this paper we explore the utility of a reduced-complexity, fast computational method (Onlapse-2D) to simulate stratal geometry, using a process of iteration to match the model output to available subsurface control (well logs and 3D seismic data). This approach was used to model the Miocene sediments in two intersecting lines of section in a complex mini-basin in the deep-water Campeche Basin, offshore Mexico. A good first-pass match between model output and geological observations was obtained, allowing us to identify and separate the effects of two distinct phases of compressional folding and a longer-lasting episode of salt withdrawal/diapirism, and to determine the timing of these events. This modelling provides an indication of the relative contribution of background sedimentation (pelagic and hemipelagic) vs. sediment-gravity-flow deposition (e.g. turbidites) within each layer of the model. The inferred timing of the compressional events derived from the model is consistent with other geological observations within the basin. The process of iteration towards a best-fit model leaves significant but local residual mismatches at several levels in the stratigraphy; these correspond to surfaces with anomalous negative (erosional) or positive (constructive depositional) palaeotopography. We label these mismatch surfaces “informative discrepancies” because the magnitude of the mismatch allows us to estimate the geometry and magnitude of the local seafloor topography. Reduced-complexity simulation is shown to be a useful and effective approach, which, when combined with an existing seismic interpretation, provides insight into the geometry and timing of controlling processes, indicates the nature of the sediments (background vs. sediment-gravity-flow) and aids in the identification of key erosional or constructional surfaces within the stratigraphy.


Quaternary ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 44
Author(s):  
Gemma Aiello ◽  
Mauro Caccavale

This study discusses the siliciclastic to bioclastic deposits (in particular, the rhodolith deposits) in the Gulf of Naples based on sedimentological and seismo-stratigraphic data. The selected areas are offshore Ischia Island (offshore Casamicciola, Ischia Channel), where a dense network of sea-bottom samples has been collected, coupled with Sparker Multi-tip seismic lines, and offshore Procida–Pozzuoli (Procida Channel), where sea-bottom samples are available, in addition to Sparker seismic profiles. The basic methods applied in this research include sedimentological analysis, processing sedimentological data, and assessing seismo-stratigraphic criteria and techniques. In the Gulf of Naples, and particularly offshore Ischia, bioclastic sedimentation has been controlled by seafloor topography coupled with the oceanographic setting. Wide seismo-stratigraphic units include the bioclastic deposits in their uppermost part. Offshore Procida–Pozzuoli, siliciclastic deposits appear to prevail, coupled with pyroclastic units, and no significant bioclastic or rhodolith deposits have been outlined based on sedimentological and seismo-stratigraphic data. The occurrence of mixed siliciclastic–carbonate depositional systems is highlighted in this section of the Gulf of Naples based on the obtained results, which can be compared with similar systems recognized in the central Tyrrhenian Sea (Pontine Islands).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yukihisa Sanada ◽  
Yoshimi Urabe ◽  
Toshiharu Misonou ◽  
Takehiko Shiribiki ◽  
Takahiro Nakanishi ◽  
...  

AbstractLarge quantities of volatile radionuclides were released into the atmosphere and the hydrosphere following the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on March, 2011. Monitoring of radiocesium in sediment is important for evaluating the behavior of radiocesium in the environment and its effect on aquatic organisms. In this study, the radiocesium distribution in the surface sediment around the FDNPP was visualized as a radiocesium concentration map using periodical survey data from a towed gamma-ray detection system. The uncertainty of the radiocesium map was evaluated via comparison with a large amount of sediment core sample data. The characteristics of the radiocesium distribution were examined considering the seafloor topography and a geological map, which were obtained via acoustic wave survey. The characteristics of the formation of 137Cs anomaly at the estuaries were analyzed using a contour map of 137Cs concentration combined with water depth. Validation of the created map showed that it was comparable with actual sediment core samples. The map generated using the towed radiation survey depicted the 137Cs concentration distribution as the position resolution of a 1 km mesh. Finally, the 137Cs concentration decreased with time in consideration of such uncertainty.


2021 ◽  
Author(s):  
Marta Guerra ◽  
Stephen M. Dawson ◽  
Tamlyn R. Somerford ◽  
Elizabeth Slooten ◽  
William J. Rayment

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11972
Author(s):  
Samuel Georgian ◽  
Lance Morgan ◽  
Daniel Wagner

The Salas y Gómez and Nazca ridges are two adjacent seamount chains off the west coast of South America that collectively contain more than 110 seamounts. The ridges support an exceptionally rich diversity of benthic and pelagic communities, with the highest level of endemism found in any marine environment. Despite some historical fishing in the region, the seamounts are relatively pristine and represent an excellent conservation opportunity to protect a global biodiversity hotspot before it is degraded. One obstacle to effective spatial management of the ridges is the scarcity of direct observations in deeper waters throughout the region and an accompanying understanding of the distribution of key taxa. Species distribution models are increasingly used tools to quantify the distributions of species in data-poor environments. Here, we focused on modeling the distribution of demosponges, glass sponges, and stony corals, three foundation taxa that support large assemblages of associated fauna through the creation of complex habitat structures. Models were constructed at a 1 km2 resolution using presence and pseudoabsence data, dissolved oxygen, nitrate, phosphate, silicate, aragonite saturation state, and several measures of seafloor topography. Highly suitable habitat for each taxa was predicted to occur throughout the Salas y Gómez and Nazca ridges, with the most suitable habitat occurring in small patches on large terrain features such as seamounts, guyots, ridges, and escarpments. Determining the spatial distribution of these three taxa is a critical first step towards supporting the improved spatial management of the region. While the total area of highly suitable habitat was small, our results showed that nearly all of the seamounts in this region provide suitable habitats for deep-water corals and sponges and should therefore be protected from exploitation using the best available conservation measures.


2021 ◽  
Author(s):  
Yukihisa Sanada ◽  
Yoshimi Urabe ◽  
Toshiharu Misonou ◽  
Takehiko Shiribiki ◽  
Takahiro Nakanishi ◽  
...  

Abstract Large quantities of volatile radionuclides were released into the atmosphere and the hydrosphere following the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on March 11, 2011. Monitoring of radiocesium in sediment is important for evaluating the behavior of radiocesium in the environment and its effect on aquatic organisms. In this study, the radiocesium distribution in the surface sediment around the FDNPP was visualized as a radiocesium map using periodical survey data from a towed gamma-ray detection system. The uncertainty of the radiocesium map was evaluated via comparison with a large amount of sediment core sample data. The characteristics of the radiocesium distribution were examined considering the seafloor topography and a geological map, which were obtained via acoustic wave survey. The characteristics of the formation of 137Cs anomaly at the estuaries were analyzed using a contour map of 137Cs concentration combined with water depth. Validation of the created map showed that it was comparable with actual sediment core samples. The map generated using the towed radiation survey depicted the 137Cs concentration distribution as the position resolution of a 1 km mesh. Finally, the 137Cs concentration decreased with time in consideration of such uncertainty.


Sign in / Sign up

Export Citation Format

Share Document