scholarly journals A Baire function not countably decomposable into continuous functions

1973 ◽  
Vol 098 (4) ◽  
pp. 398-399
Author(s):  
Roy O. Davies
1982 ◽  
Vol 91 (3) ◽  
pp. 457-458 ◽  
Author(s):  
Roy O. Davies ◽  
Claude Tricot

A function f:X → ℝ is countably decomposable (into continuous functions) if the topological space X can be partitioned into countably many sets An with each restriction f│ An continuous. According to L. V. Keldysh(2), the question whether every Baire function is countably decomposable was first raised by N. N. Luzin, and answered by P. S. Novikov. The answer is negative even for Baire-1 functions, as is shown in (2) (see also (1). In this paper we develop a characterization of the countably decomposable functions on a separable metric space X (see Corollary 1). We deduce that when X is complete they include all functions possessing the property P defined by D. E. Peek in (3): each non-empty σ-perfect set H contains a point at which f│ H is continuous. The example given by Peek shows that not every countably decomposable Baire-1 function has property P.


2010 ◽  
Vol 47 (3) ◽  
pp. 289-298 ◽  
Author(s):  
Fadime Dirik ◽  
Oktay Duman ◽  
Kamil Demirci

In the present work, using the concept of A -statistical convergence for double real sequences, we obtain a statistical approximation theorem for sequences of positive linear operators defined on the space of all real valued B -continuous functions on a compact subset of the real line. Furthermore, we display an application which shows that our new result is stronger than its classical version.


2021 ◽  
Vol 7 (1) ◽  
pp. 88-99
Author(s):  
Zanyar A. Ameen

AbstractThe notions of almost somewhat near continuity of functions and near regularity of spaces are introduced. Some properties of almost somewhat nearly continuous functions and their connections are studied. At the end, it is shown that a one-to-one almost somewhat nearly continuous function f from a space X onto a space Y is somewhat nearly continuous if and only if the range of f is nearly regular.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3593-3597
Author(s):  
Ravindra Bisht

Combining the approaches of functionals associated with h-concave functions and fixed point techniques, we study the existence and uniqueness of a solution for a class of nonlinear integral equation: x(t) = g1(t)-g2(t) + ? ?t,0 V1(t,s)h1(s,x(s))ds + ? ?T,0 V2(t,s)h2(s,x(s))ds; where C([0,T];R) denotes the space of all continuous functions on [0,T] equipped with the uniform metric and t?[0,T], ?,? are real numbers, g1, g2 ? C([0, T],R) and V1(t,s), V2(t,s), h1(t,s), h2(t,s) are continuous real-valued functions in [0,T]xR.


1995 ◽  
Vol 21 (1) ◽  
pp. 203
Author(s):  
Banaszewski
Keyword(s):  

1982 ◽  
Vol 8 (2) ◽  
pp. 455
Author(s):  
Akemann ◽  
Bruckner

1989 ◽  
Vol 15 (1) ◽  
pp. 13
Author(s):  
Ciesielski ◽  
Larson ◽  
Ostaszewski
Keyword(s):  

1980 ◽  
Vol 6 (1) ◽  
pp. 67 ◽  
Author(s):  
Kostyrko ◽  
Neubrunn ◽  
Smital ◽  
Šalát

Sign in / Sign up

Export Citation Format

Share Document